
MELSEC iQ-R Structured Text (ST)
Programming Guide Book

1

SAFETY PRECAUTIONS
(Read these precautions before using this product.)

Before using this product, please read this manual and the relevant manuals carefully and pay full attention to safety to handle

the product correctly.

The precautions given in this manual are concerned with this product only. For the safety precautions of the programmable

controller system, refer to the user's manual for the CPU module used.

In this manual, the safety precautions are classified into two levels: " WARNING" and " CAUTION".

Under some circumstances, failure to observe the precautions given under " CAUTION" may lead to serious

consequences.

Observe the precautions of both levels because they are important for personal and system safety.

Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

[Design Precautions]

WARNING
● When data change, program change, or status control are performed from a personal computer to a

running programmable controller, create an interlock circuit outside the programmable controller to

ensure that the whole system always operates safely.

WARNING Indicates that incorrect handling may cause hazardous conditions, resulting in
death or severe injury.

CAUTION Indicates that incorrect handling may cause hazardous conditions, resulting in
minor or moderate injury or property damage.

2

CONDITIONS OF USE FOR THE PRODUCT

INTRODUCTION
Thank you for purchasing the Mitsubishi MELSEC iQ-R series programmable controllers.

This manual describes the programming using Structured Text (ST) in GX Works3.

Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the

functions and performance of the MELSEC iQ-R series programmable controller to handle the product correctly.

When applying the program and circuit examples provided in this manual to an actual system, ensure the applicability and

confirm that it will not cause system control problems.

(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;
i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident;
and
ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the
case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.
MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL
RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY
INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE
OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR
WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL
BULLETINS AND GUIDELINES FOR the PRODUCT.
("Prohibited Application")
Prohibited Applications include, but not limited to, the use of the PRODUCT in;
• Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the

public could be affected if any problem or fault occurs in the PRODUCT.
• Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality

assurance system is required by the Purchaser or End User.
• Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator,

Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and
Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other

3

C
O

N
T

E
N

T
S

CONTENTS
SAFETY PRECAUTIONS .1

CONDITIONS OF USE FOR THE PRODUCT .2

INTRODUCTION. .2

RELEVANT MANUALS .6

TERMS .6

PART 1 ST PROGRAMMING

CHAPTER 1 WHAT IS STRUCTURED TEXT? 8

1.1 International Standard IEC 61131-3 . 8

1.2 Features of Structured Text Language . 8

1.3 Proper Use for Programming Languages . 10

CHAPTER 2 BASIC RULES FOR DESCRIPTION 11

2.1 Characters . 11

Character code . 11

Basic component (Token) . 11

2.2 Instructions and Functions . 12

2.3 Statement and Expression . 13

Statement . 13

Expression. 14

CHAPTER 3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT 15

3.1 Operational Expressions . 15

Assignment (:=) . 15

Basic arithmetic operations (+, -, *, /) . 15

Advanced operations (exponent function, trigonometric function). 17

Logical operation (AND, OR, XOR, NOT) . 18

Comparison (<, >, <=, >=), equality/inequality (=,<>) . 18

3.2 Selection. 19

Selection by boolean value (IF) . 19

Selection (CASE) by integer . 21

3.3 Iteration . 22

Iteration by boolean condition (WHILE, REPEAT). 22

Iteration by integer value (FOR) . 24

CHAPTER 4 HANDLING VARIOUS DATA TYPES 25

4.1 Boolean Value . 25

4.2 Integer and Real Number . 25

Value of range . 25

Type conversion which is performed automatically . 26

Data type of the operation result of arithmetic expression . 27

Division of integer and real number. 27

4.3 Character String . 28

4.4 Time . 29

Time type variable . 29

Clock data (date and time) . 30

4

4.5 Array and Structure. 31

Array . 31

Structure . 32

Data type combined with structure and array . 33

CHAPTER 5 DESCRIBING LADDER PROGRAM IN STRUCTURED TEXT 34

5.1 Describing Contacts and Coils. 34

Open contact and coil . 34

Closed contact (NOT) . 34

Series connection, parallel connection (AND, OR) . 35

Contact and coil of which execution order are complicated . 36

5.2 Describing Instructions . 37

Instructions that can be used in ladder program and ST program . 37

Instructions that can be described using assignment statements . 38

Instructions that can be described using operator. 38

Instructions that can be described in control statement and FUN/FB . 39

5.3 Describing Statements of Ladder and Notes . 39

CHAPTER 6 PROGRAM CREATION PROCEDURE 40

6.1 Overview of Procedure . 40

6.2 Opening ST Editor . 40

6.3 Editing ST Programs. 40

Entering texts. 41

Entering control statement. 41

Entering comment . 42

Using labels . 43

Creating functions and function blocks . 45

Entering function . 47

Entering function block . 49

6.4 Converting and Debugging Programs. 51

Converting programs. 51

Checking error/warning . 51

6.5 Checking Execution on CPU Module. 52

Executing programs in the programmable controller. 52

Checking the running program . 53

6.6 Inserting ST Program in Ladder Program (Inline structured text) . 54

PART 2 PROGRAM EXAMPLES

CHAPTER 7 OVERVIEW OF PROGRAM EXAMPLE 56

7.1 List of Program Example . 56

7.2 Applying Program Example in GX Works3 . 57

CHAPTER 8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION
AND SELECTION) 58

8.1 Initialization Program: Initialization . 60

8.2 Basic Arithmetic Operation (FUN): Calculation . 61

8.3 Rounding Processing (FUN): Rounding . 62

8.4 Fraction Processing (FUN): FractionProcessing . 63

5

C
O

N
T

E
N

T
S

8.5 Calculator Program: Calculator . 65

8.6 Post-Tax Price Calculation: IncludingTax . 67

CHAPTER 9 POSITIONING PROCESSING (EXPONENT FUNCTION,
TRIGONOMETRIC FUNCTION AND STRUCTURE) 68

9.1 Rotation Angle Calculation (FUN): GetAngle . 69

9.2 Distance Calculation (FUN): GetDistance . 70

9.3 X, Y-Coordinate Calculation (FUN): GetXY . 71

9.4 Command Pulse Calculation (FB): PulseNumberCalculation . 72

9.5 Positioning Control: PositionControl . 73

CHAPTER 10 SORTING OF DEFECTIVE PRODUCTS (ARRAY AND ITERATION
PROCESSING) 75

10.1 Product Check (FB): ProductCheck . 76

10.2 Sorting Product Data (FB): Assortment . 78

10.3 Product Data Management: DataManagement . 79

CHAPTER 11 MEASUREMENT OF OPERATING TIME (TIME AND CHARACTER
STRING) 81

11.1 Operating Time Management: OperatingTime . 82

11.2 Flicker Timer (FB): FlickerTimer . 83

11.3 Lamp ON/OFF: LampOnOff . 84

11.4 Conversion from Sec. to Hour/Min/Sec: SecondsToTimeArray . 85

11.5 Conversion from Time to String: TimeToString . 86

APPENDIX 89

Appendix 1 Specifications of Structured Text language . 89

Statement . 89

Operator . 90

Comment . 90

Device . 91

Label . 93

Constant . 93

Function and function block. 94

Appendix 2 Instructions That Cannot be Used in ST Programs . 96

Instructions that can be described in assignment statement. 96

Instructions that can be described with operator . 96

Instructions that can be described with control statement or function . 98

Unnecessary instructions for ST program . 98

INDEX 99

REVISIONS. .101

TRADEMARKS .102

6

RELEVANT MANUALS

e-Manual refers to the Mitsubishi FA electronic book manuals that can be browsed using a dedicated tool.

e-Manual has the following features:

 • Required information can be cross-searched in multiple manuals.

 • Other manuals can be accessed from the links in the manual.

 • The hardware specifications of each part can be found from the product figures.

 • Pages that users often browse can be bookmarked.

TERMS
Unless otherwise specified, this manual uses the following terms.

Manual name [manual number] Description Available form

MELSEC iQ-R Structured Text (ST) Programming

Guide Book

[SH-081483ENG](this manual)

Explains the programming method using Structured Text (ST) in GX Works3.

Fundamental operations and functions are explained using sample programs.

Print book

e-Manual

PDF

GX Works2 Beginner's Manual (Structured Project)

[SH-080788ENG]

Explains the programming method using Structured Text (ST) in GX Works2. Print book

PDF

Structured Text (ST) Programming Guide Book

[SH-080368E]

Explains the programming method using Structured Text (ST) in GX

Developer.

Print book

PDF

Term Description

Device A variable of which name, type, and usage are defined by system

Engineering tool A tool for setting, programming, debugging, and maintaining programmable controllers.

Execution program A program which has been converted

This program can be executed in a CPU module.

FB An abbreviation for function block

FUN An abbreviation for function

Function A function that can be used as a POU

This function always outputs same result for the same input.

Function block A function that can be used as a POU

This function retains values in the internal variables. It can be used as an instance.

GX Developer The product name of the software package for the MELSEC programmable controllers

A generic product name for SW8D5C-GPPW

GX Works2 The product name of the software package for the MELSEC programmable controllers

A generic product name for SWnDNC-GXW2 ('n' indicates version.)

GX Works3 The product name of the software package for the MELSEC programmable controllers

A generic product name for SWnDND-GXW3 ('n' indicates version.)

Instance An entity of a function block of which devices are assigned to the defined internal variables to be processed and

executed

One or more instances can be created for one function block.

Label A variable that is defined by user

LD An abbreviation for Ladder Diagram

POU A unit that configures a program

Units are categorized and provided in accordance with functions. Use of POUs enables dividing the lower-layer

processing in a hierarchical program into some units in accordance with processing or functions, and creating programs

for each unit.

ST An abbreviation for Structured Text

7

P
A

R
T

 1

PART 1 ST PROGRAMMING

This part explains the ST programming with MELSEC-iQ-R series.

1 WHAT IS STRUCTURED TEXT?

2 BASIC RULES FOR DESCRIPTION

3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT

4 HANDLING VARIOUS DATA TYPES

5 DESCRIBING LADDER PROGRAM IN STRUCTURED TEXT

6 PROGRAM CREATION PROCEDURE

8
1 WHAT IS STRUCTURED TEXT?
1.1 International Standard IEC 61131-3

1 WHAT IS STRUCTURED TEXT?

1.1 International Standard IEC 61131-3
IEC 61131-3 is the international standard for the PLC (Programmable Logic Controller) system, which is established by one of

the international standard association, IEC (International Electrotechinical Commission).

In IEC 61131-3, five programming languages (IL/LD/ST/FBD/SFC) are regulated, and the guidelines for creating programs

are described.

1.2 Features of Structured Text Language
Structured Text language is a description method for programming in text format. This language can be described in the same

manner as a programming language for a personal computer such as C language. By using this language, the visibility of a

program can be improved because the operation and data processing can be described simply.

Operation using mathematical expression
Arithmetic operations and comparison operations can be described in the same manner as the generic expression.

■Multiple operations can be described in one line
Since the operators (such as + and -) can be used, a program can be read much more easily than a ladder program.

Program example

Assign the average from the wValue0 to the wValue2 in the wAverage3.

wAverage3 = (wValue0 + wValue1 + wValue2)  3

For details of the description method using Structured Text language, refer to the following section.

Page 15 Operational Expressions

ST

wAverage3 := (wValue0 + wValue1 + wValue2) / 3;

LD

AlwaysON
MOV 0 wTotal

+ wValue0 wTotal

+ wValue1 wTotal

+ wValue2 wTotal

/ wTotal 3 wArray0

MOV wArray0[0] wAverage3

1 WHAT IS STRUCTURED TEXT?
1.2 Features of Structured Text Language 9

1

■Description of expression regardless of data type
The description method for the expression of which value of decimal place is required to be considered is the same as the

ordinary expression. The complex operations for real number type can be described simply.

Program example

Scaling analog data.

Scaling value = (After conversion.Upper limit - After conversion.Lower limit)  (Before conversion.Upper limit - Before

conversion.Lower limit)  (Measured value - Before conversion.Lower limit) + After conversion.Lower limit

For details of the description method using the Structured Text language, refer to the following section.

Page 25 Integer and Real Number

Complex information processing
By using a selection statement or an iteration statement, a complex processing of which execution contents branches

depending on the condition, and the processing to be repeated can be described more easily than a ladder program.

Program example

Set 0 to 3 to the wValue1 depending on the value of the wValue0.

 • 100 or 200: 0

 • 1 to 99: 1

 • 150: 2

 • Other than above: 3

For details of the description method using Structured Text language, refer to the following section.

Page 19 Selection, Page 22 Iteration

ST

eScalingValue := (stAfter.eUpperLimit - stAfter.eLowerLimit) / (stBefore.eUpperLimit - stBefore.eLowerLimit) * (eMeasurements - stBefore.eLowerLimit) +

stAfter.eLowerLimit;

ST

CASE wValue0 OF

100, 200: wValue1 := 0;

1..99: wValue1 := 1;

150: wValue1 := 2;

ELSE wValue1 := 3;

END_CASE;

LD

AlwaysON
= wValue0 100 MOV 0 wValue1

= wValue0 200 <= 1 wValue0 <= wValue0 99
K0

K0 MOV 1 wValue1

= wValue0 150 MOV 2 wValue1

MOV 3 wValue1

10
1 WHAT IS STRUCTURED TEXT?
1.3 Proper Use for Programming Languages

1.3 Proper Use for Programming Languages
The features of the five programming languages described in IEC 61131-3 are as follows:

To take full advantage of the features of each language, create a program by combining each language in accordance with the

process.

In GX Works3, the combination of the Structured Text and other languages can be used in the following functions.

By describing a simple relay sequence process and perspicuous process using the Ladder Diagram, and describing a part of

complex process using the Structured Text of which process can be segmented, an easy-to-see program can be created.

Programming language Features

IL Instruction list This language is suitable for high-speed processing or when CPU has a memory limitation. A

compact program can be described.

LD Ladder diagram This language is suitable for simple relay sequence processing.

ST Structured text This language is suitable for operation using mathematical expressions or complex information

processing. This language is familiar for engineers who are accustomed to a programming

language for a personal computer.

FBD Function block diagram This language is suitable for continuous analog signal processing.

SFC Sequential function chart This language is suitable for step sequence based on the state transition.

Function Language Description

Inline Structured

Text

LD Describe the part of a relay sequence processing using Structured Text.

FUN/FB LD

FBD

Define a sub program (subroutine) described in Structured Text as a POU, and call it from other

programs such as LD.

LD with inline structured text

LD with FUN/FB

1 wAverage3 := (wValue0 + wValue1+ wValue2) / 3;AlwaysON

B:EN

W:i_wValue0

ENO:B

o_wValue1:W

AlwaysON

wValue0 wValue1

FbPou_1 (FbPou)

2 BASIC RULES FOR DESCRIPTION
2.1 Characters 11

2

2 BASIC RULES FOR DESCRIPTION

This chapter explains the basic rules for describing programs in the Structured Text language.

2.1 Characters
The Structured Text is a programming language that can be described in text format. This section explains the characters and

symbols that can be used in the Structured Text language.

Character code
GX Works3 supports the characters in the Unicode Basic Multilingual Plane (UTF-16).

Basic characters and symbols in multiple languages such as Japanese, English, and Chinese can be used for not only

comments but also label names and data names.

For the characters (reserved words) that cannot be used for a label name and data name, refer to the

following manual.

 GX Works3 Operating Manual

Basic component (Token)
A term or symbol that configures the program is referred to as a token.

In the Structured Text language describe the program using the following tokens.

A blank, line feed, and comment can be inserted among tokens.

Type Example Reference

Operator +, -, <, >, =, &, NOT Page 90 Operator

Keyword of control statement (defined standard identifier) IF, CASE, WHILE, RETURN Page 89 Statement

Identifier Variable

(Labels, devices, etc.)

X0, Y10, M100, D10, ZR0,

bSwitch_A (arbitrary name)

Page 91 Device

Page 93 Label

POU

(Function, function block)

BMOV, FunPou (arbitrary name),

COUNTER_FB_M_1, FbPou_1 (arbitrary name)

Page 94 Function and function block

Constant 123, 'Character string', TRUE, FALSE Page 93 Constant

Break character ;, (,) 

Type Example Reference

Blank Space, TAB 

Line feed Line feed 

Comment (**), /**/, // Page 90 Comment

Label Device Operator Constant Comment

Control statement

Function
Line feedFunction block

(instance) Delimiter

TAB Space

12
2 BASIC RULES FOR DESCRIPTION
2.2 Instructions and Functions

2.2 Instructions and Functions
The instructions which can be used in a ladder program is treated as functions in the Structured Text language.

The instructions and functions can be used in a similar format as function call of C language.

In GX Works3, the following functions and function blocks can be used.

The instructions which are not necessary for Structure Text language (such as contact) are not supported.

Page 96 Instructions That Cannot be Used in ST Programs

For details of the instructions, refer to the following manuals.

MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

 FB reference of each MELSEC-iQ-R module

Function and function block
Function and function block are the POUs in which a subroutine to be called in a program is defined.

■Function
Function is a POU that outputs same result for the same input. Function is suitable for segmenting a simple and independent

processing.

Describe the function name and arguments in an ST program as follows:

■Function block
Function block is a POU of which internal values can be used for operations. The different result is output for the same input

depending on the value retained in each instance (entity). Function block is suitable for segmenting much more complex

processing than a function, or for processing which is required to be executed repeatedly using the retained value.

To use a function block in an ST program, describe an instance and arguments as follows;

For details of the description method using Structured Text language, refer to the following section.

Page 94 Function and function block

For details of the functions and function blocks, refer to the following manual.

MELSEC iQ-R Programming Manual (Program Design)

Type Instruction and function that corresponds to MELSEC-Q/L series

GX Works2 GX Developer

CPU module instruction

Module dedicated instruction

Common instruction MELSEC function

Standard function

Standard function block

Application function IEC function

Module FB MELSOFT Library 

MELSOFT Library (sample libraries) 

Function and function block that are created by user  

Return value Instruction name Arguments

ArgumentsReturn value Function name

ArgumentsFunction block instance name

2 BASIC RULES FOR DESCRIPTION
2.3 Statement and Expression 13

2

2.3 Statement and Expression
This section explains "statement" and "expression" which indicate units that configure an ST program.

Statement
A group of one execution process is referred to as "statement".

A program is described in "statement" units.

Each statement must end with a semicolon ';'.

The following shows the types of the statements.

Hierarchization of a control statement can be performed. (Other statements such as a select statement or an iteration

statement can be described among the statements.).

Type Description Example

Assignment statement Assigns the evaluation result in the right side to the variable in the

left side.

Page 15 Assignment (:=)

Control

statement

Selection statement (IF, CASE) Selects an execution statement depending on the condition. Page 19 Selection

Iteration statement (FOR, WHILE,

REPEAT)

Continues executing the execution statement for multiple times

depending on the end condition.

Page 22 Iteration

Exit of an iteration statement (EXIT) Exits an iteration statement. EXIT;

Subprogram

control

statement

Call statement Calls a function or function block. Page 94 Function and function

block

RETURN statement Ends a process in the middle of a program. RETURN;

Empty statement Nothing is processed. ;

Structure of statement and type

(Substitution statement) ;

(Selection statement)

(Statement) ;

(Statement) ;

;

(Iteration statement)

;(Statement)

;

Function call statement ;

Function block call statement

;

; (Empty statement)

';' indicates the end of the statement.

(Statement)

(Statement)

;

;

14
2 BASIC RULES FOR DESCRIPTION
2.3 Statement and Expression

Expression
A description of values which are required for processing for a statement is referred to as "expression".

An expression is configured with variables and operators. The value of an expression is evaluated during the execution of a

program.

The expressions are used in the following position in the statement.

 • Right side of an assignment statement

 • Execution result (EN) or input argument of a function and a function block

 • Condition that is specified with a selection statement or iteration statement

The data type of an expression is recognized at compilation (conversion). The value of an expression is evaluated during the

execution of a program.

An operational expression such as an arithmetic operation and a comparison operation can be described by combining with

constant or variable, and operator in the same manner as a generic expression.

A variable and constant can be used as an expression (primary expression) in the Structured Text language.

The types of expressions are as follows

A function which does not have a return value cannot be used as an expression.

Type Data type of expression (operation result) Example

Operational

expression

Arithmetic expression Integer, real number (depending on the operation target) wValue0 + wValue1

Logical expression Boolean value (TRUE/FALSE) bFlag0 OR bFlag1

Comparison expression Boolean value (TRUE/FALSE) wValue0 > 0

Primary

expression

Variable, constant Defined data type X0, wValue0, 123, TRUE

Function call expression Data type of return value FunPou(wValue0, wValue1)

Statement usage position

(Right side of the substitution statement)

(Condition of the selection statement)

(Condition of the iteration statement)

(Input argument of function)

(Input argument of function block)

3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT
3.1 Operational Expressions 15

3

3 DESCRIBING PERSPICUOUS PROGRAMS IN
STRUCTURED TEXT

This chapter explains the process which makes it easy to read by describing using Structured Text language.

3.1 Operational Expressions
Complex operations which include decimal point or exponent can be described in the same manner as a general arithmetic

expression using Structured Text language.

Assignment (:=)
The result of an evaluation can be stored to a variable using an assignment statement.

Describe an assignment statement using ':='. This operational expression stores the calculation result of the right side to the

variable in the left side.

Use ':=' in the Structured Text language instead of '=' which is used in a general expression.

Basic arithmetic operations (+, -, *, /)
Describe a basic arithmetic operation in the same manner as a general arithmetic expression using the operator (+, -, *, /).

The operation which cannot be described once in a ladder program can be described in one expression in the Structured Text

language.

Program example

The sum from the wValue0 to the wValue2 is assigned to wTotal.

wTotal = wValue0 + wValue1 + wValue2

When multiple operational expressions are described in one statement, the operation is processed in order

from high priority operation.

 • Priority of basic arithmetic operations (high to low): Multiplication and division (*, /), addition and subtraction

(+, -)

When some operators of which priority is the same are used in one statement, the operators are calculated in

order from the left.

ST

wTotal := wValue0 + wValue1 + wValue2;

LD

<Expression> ;<Variable> :=

Assign the result

AlwaysON
MOV 0 wTotal

+ wValue0 wTotal

+ wValue1 wTotal

+ wValue2 wTotal

16
3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT
3.1 Operational Expressions

An operational expression in parentheses () is calculated first.

Using the parentheses () in complex basic arithmetic operations makes it easy to read the order of the expression.

Program example

The average from the wValue0 to the wValue2 is assigned to the wAverage3.

wAverage3 = (wValue0 + wValue1 + wValue2)  3

ST

wAverage3 := (wValue0 + wValue1 + wValue2) / 3;

LD

AlwaysON
MOV 0 wTotal

+ wValue0 wTotal

+ wValue1 wTotal

+ wValue2 wTotal

/ wTotal 3 wArray0

MOV wArray0[0] wAverage3

3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT
3.1 Operational Expressions 17

3

Advanced operations (exponent function, trigonometric function)
Describe exponent functions and trigonometric functions using standard functions.

Describe an exponentiation using '**'.

Program example

The length of a hypotenuse is obtained.

Type Function name Example

General mathematical
expression

ST

Absolute value ABS B = |A| eValueB := ABS(eValueA)

Square root SQRT B = eValueB := SQRT(eValueA);

Natural logarithm LN B = log eA eValueB := LN(eValueA);

Common logarithm LOG B = log 10A eValueB := LOG(eValueA);

Exponent EXP B = eA eValueB := EXP(eValueA);

Trigonometric

functions

Sine, arcsine SIN, ASIN B = SIN A eValueB := SIN (eValueA)

Cosine, arccosine COS, ACOS B = COS A eValueB := COS(eValueA);

Tangent, arctangent TAN, ATAN B = TAN A eValueB := TAN(eValueA);

Type Operator Example

General mathematical
expression

ST

Exponentiation ** B = CA eValueB := eValueC ** eValueA;

ST

eValueC := SQRT((eValueA ** 2.0) + (eValueB ** 2.0));

LD

A

C = (A + B)2 2
C

B

A

AlwaysON
POW eValueA 2.0 eTmp1

POW eValueB 2.0 eTmp2

E+ eTmp1 eTmp2

ESQRT eTmp2 eValueC

18
3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT
3.1 Operational Expressions

Logical operation (AND, OR, XOR, NOT)
Describe a logical operation not with symbols (such as , , and ) but with an operator, which can easily be input and

understood.

Program example

The logical product (AND) of the bFlag0 and the bFlag1 is assigned to the bResult.

AND operation can also be described using '&'.

When multiple operational expressions are described in one statement, the operation is processed in order

from high priority operation.

 • Priority of logical operator (high to low): NOT operation, AND operation (AND, &), XOR operation, OR

operation

When some operators of which priority is the same are used in one statement, the operators are calculated in

order from the left.

Comparison (<, >, <=, >=), equality/inequality (=,<>)
Describe a comparison operation using an equal sign or an inequality sign, which is the same symbol as a general arithmetic

symbol.

Program example

The comparison result of the wValue0 and the wValue1 (equality: TRUE, inequality: FALSE) is assigned to the bResult.

In the Structured Text language, '=' is regarded as an operator which compares if the left side and right side of

the statements are equal.

Describe an assignment statement using ':='.

ST

bResult := bFlag0 AND bFlag1;

LD

ST

bResult := wValue0 = wValue1;

LD

bFlag0 bFlag1 bResult

= wValue0 wValue1
bResult

3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT
3.2 Selection 19

3

3.2 Selection
In the Structured Text language, the process which branches off depending on the condition can be used in the same manner

as a high-level programming language, such as C language.

By using the selection statement (IF, CASE), the case to be executed and the statement to be executed can be described.

Selection by boolean value (IF)
Describe the process which branches off depending on the condition (TRUE or FALSE) using an IF statement.

The following process is performed in an IF statement.

The following items can be specified in the conditional expression of IF statement.

 • Operational expression of which result is to be a boolean value

 • Variable of boolean type

 • Function call expression of which return value is boolean type

Multiple selections using ELSIF (ELSIF<Condition>THEN<Statement>;) can be set.

Describe the selection using ELSIF or ELSE as necessary. (Omittable)

Program example

The different value is set to the wValue0 depending on the condition of the bFlag0.

 • When ON (bFlag0 is TRUE): wValue0 = 100

 • When OFF (bFlag0 is FALSE): wValue0 = 0

1. Judgment of IF

When Condition expression 1 is TRUE, the Statement 1 is executed.

2. Judgment of ELSIF

When the conditional expression above is FALSE, the condition is judged.

When the Condition expression 2 is TRUE, the Statement 2 is executed.

3. Judgment of ELSE

When all the conditions of 'IF' and 'ELSIF' are FALSE, the Statement 3

after 'ELSE' is executed.

ST

IF bFlag0 THEN

wValue0 := 100;

ELSE

wValue0 := 0;

END_IF;

LD

IF <Condition 1> THEN
 <Statement 1>;

 ELSIF <Condition 2> THEN
 <Statement 2>;

 ELSE
 <Statement 3>;

END_IF;

Miltiple ELSIFs
(in the line frame)
are allowable.

ELSIF, ELSE
(in the dashed-line
frame) are omittable.

bFlag0
MOV 100 wValue0

MOV 0 wValue0

20
3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT
3.2 Selection

By using the expression in which a logical operation (AND, OR, etc.) or a comparison (<, >, =, etc.) are combined for a

conditional expression of the selection statement, a program which can be branched with complex conditions can be

described.

Program example

0, 1, 2, or 3 is set to the wValue1 depending on the value of the bFlag0 and the wValue0.

 • When bFlag0 is FALSE: 0

 • When the bFlag0 is TRUE and the wValue0 is 100 or 200: 1

 • When the bFlag0 is TRUE and the wValue0 is 1 to 99: 2

 • Other than above: 3

ST

IF NOT bFlag0 THEN

wValue1 := 0;

ELSIF (wValue0 = 100) OR (wValue0 = 200) THEN

wValue1 := 1;

ELSIF (1 <= wValue0) AND (wValue0<= 99) THEN

wValue1 := 2;

ELSE

wValue1 := 3;

END_IF;

LD

bFlag0
MOV 0 wValue1

= wValue0 100 MOV 1 wValue1

= wValue0 200 <= 1 wValue0
K0

K0 <= wValue0 99 MOV 2 wValue1

MOV 3 wValue1

3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT
3.2 Selection 21

3

Selection (CASE) by integer
Describe the process of which process branches using integer values with CASE statement.

The following process is performed in a CASE statement.

The following items can be specified in the conditional expression of CASE statement.

 • Operational expression of which result is to be an integer (INT) value

 • Variable of integer (INT) type

 • Function call expression of which return value is integer (INT) type

Multiple selections (<Value>:<Statement>;) determined by an integer value can be set.

Describe the selection using ELSE (ELSE<Statement>) as necessary. (Omittable)

Program example

0, 1, 2, or 3 is set to the wValue1 depending on the value of the wValue0.

 • When 100 or 200: 0

 • When 1 to 99: 1

 • When 150: 2

 • Other than above: 3

Selects an execution statement depending on the condition of the integer

value.

1. Judgment of the Value 1

Execute the Statement 1 if the result of the conditional expression is

equals to the Value 1.

2. Judgment of the integer value in the specified range

When specifying the range of the integer value to be judged, use '..'.

When the result of the conditional expression is within the range of the

Value 2 to Value 3, the Statement 2 is executed.

3. Judgment of ELSE

When all the integer values or ranges are equal, the Statement 3 after

'ELSE' is executed.

ST

CASE wValue0 OF

100, 200: wValue1 := 0;

1..99: wValue1 := 1;

150: wValue1 := 2;

ELSE wValue1 := 3;

END_CASE;

LD

CASE <Condition> OF

 <Value 1> :
 <Statement 1>;

 <Value 2>..<Value 3> :
 <Statement 2>;

 ELSE
 <Statement 3>;

END_CASE;

Multiple statements
are allowable.

ELSE
(in the dashed-line
frame) is omittable.

AlwaysON
= wValue0 100 MOV 0 wValue1

= wValue0 200 <= 1 wValue0 <= wValue0 99
K0

K0 MOV 1 wValue1

= wValue0 150 MOV 2 wValue1

MOV 3 wValue1

22
3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT
3.3 Iteration

3.3 Iteration
By using the iteration statement (WHILE, REPEAT, FOR), the process can be executed for multiple times with the end

condition specified.

Iteration by boolean condition (WHILE, REPEAT)
Describe the process to be repeated depending on the result of its condition (TRUE or FALSE) using WHILE statement or

REPEAT statement.

The following process is performed in a WHILE statement.

The following process is performed in a REPEAT statement.

The following items can be specified in the conditional expression of WHILE and REPEAT statement.

 • Operational expression of which result is to be a boolean value

 • Variable of boolean type

 • Function call expression of which return value is boolean type

Program example

When the bFlag0 is TRUE, the wValue0 is incremented.

Execute the execution statement for multiple times depending on the end

condition of the boolean value.

Repeat processing until the result of the conditional expression is FALSE.

1. Judgment of the condition

If a conditional expression is FALSE, the process is end.

2. Execution of the process

Execute the execution statement and repeat processing when the

conditional expression is TRUE.

Execute the execution statement for multiple times depending on the end

condition of the boolean value.

Repeat processing until the result of the conditional expression is TRUE.

1. Execution of the process

Execute the execution statement.

2. Judgment of the condition

If a conditional expression is TRUE, the process is end.

If a conditional expression is FALSE, the process is repeated.

ST

WHILE bFlag0 DO

wValue0 := wValue0 + 1;

END_WHILE;

LD

WHILE <Condition>
 DO
 <Statement>;
END_WHILE;

Repeat until the result becomes
FALSE

REPEAT
 <Statement>;
 UNTIL <Condition>
END_REPEAT;

Repeat until the result becomes
TRUE

P11 bFlag0
CJ P12

AlwaysON
+ 1 wValue0

AlwaysON
CJ P11

P12

3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT
3.3 Iteration 23

3

By using the expression in which a logical operation (AND, OR, etc.) and a comparison (<, >, =, etc.) are combined for a

conditional expression of the iteration statement, a program of which end condition is complex can be described.

Program example

The wValue0 is incremented until the bFlag0 is TRUE or the wValue0 is 10 or more.

ST

REPEAT

wValue0 := wValue0 + 1;

UNTIL bFlag0 OR (wValue0 >= 10)

END_REPEAT;

LD

P21 AlwaysON
+ 1 wValue0

bFlag0
CJ P21

>= wValue0 K10

24
3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT
3.3 Iteration

Iteration by integer value (FOR)
Describe the process which repeats processing until the variable of an integer type meets the condition using FOR statement.

The following process is performed in a FOR statement.

The following items can be specified for the initial value, last value, and increment value of FOR statement.

 • Operational expression of which result is to be an integer (INT) value

 • Variable of integer (INT) type

 • Function call expression of which return value is integer (INT) type

Convert the type in order that the value is to be an integer type.

If the increment value is 1, the addition process of the increment value (BY<Increment (expression)>;) can be

omitted.

After the execution of the FOR statement, the variable set as a condition retains the value at the end of the

FOR statement.

Program example

The element from 10 to 20 of the wArray1 are set to the element from 0 to 10 of the wArray0.

By combining the array type data with iteration statement, the identical data processing can be performed for

multiple array elements.

Execute the execution statement for multiple times depending on the end

condition of the integer value.

The execution is repeated until the variable of the integer type, to which

the initial value has been set, is reached at the last value.

1. Initialization of variable

Set the initial value to the variable to be a condition.

2. Judgment of the condition

If the variable is reached at the last value, the process is end.

3. Execution of the process

Execute the execution statement.

4. Addition of increment value

Add the increment value to the variable, and repeat processing.

ST

FOR wIndex0 := 0 TO 10 BY 1 DO

wArray0[wIndex0] := wArray1[wIndex0 + 10];

END_FOR;

LD

FOR <Variable> := <Initial (expression)>

 TO <End (expression)>

 BY <Increment (expression)>

 DO <Statement>;

END_FOR;

BY (in the
dashed-line (thin)
frame) is omittable.

FOR 10

AlwaysON
+ wIndex0 K10 wTmp1

MOV wArray1
[wTmp1]

wArray0
[wIndex0]

NEXT

4 HANDLING VARIOUS DATA TYPES
4.1 Boolean Value 25

4

4 HANDLING VARIOUS DATA TYPES

This chapter explains the considerations when handling the variables of each data type, how to specify the data types, and

how to convert using the Structured Text language.

Define the data type of labels at registration of labels. The data type of devices differ depending on the device type.

When using the value with the different data type as the defined one, use a type conversion function of a

standard function.

4.1 Boolean Value
Boolean is a 1 bit data type that holds 0 or 1.

Use this data type when indicating the ON/OFF for a bit device or TRUE/FALSE for an execution result.

A label to which a bit device or "Bit" data type is set is treated as a variable of boolean value.

4.2 Integer and Real Number
An integer type label, a real number type label, and a word device are treated as a variable of integer or real number.

The basic data type of a value used for each processing is integer type. When handling the value of decimal place, use a

value of real number type.

Value of range
Depending on the type of variable, the effective digits differ. Specify the variable of the appropriate data type depending on the

operation to be executed.

The following shows the ranges that can be handled in operation depending on the data type of the variable.

Data type Range

Integer Word [Unsigned]/Bit String [16-bit] WORD 0 to 65535

Double Word [Unsigned]/Bit String [32-bit] DWORD 0 to 4294967295

Word [Signed] INT -32768 to 32767

Double Word [Signed] DINT -2147483648 to 2147483647

Real

number

FLOAT [Single Precision] REAL -2128 to -2-126, 0, 2-126 to 2128

FLOAT [Double Precision] LREAL -21024 to -2-1022, 0, 2-1022 to 21024

26
4 HANDLING VARIOUS DATA TYPES
4.2 Integer and Real Number

Type conversion which is performed automatically
When using the Structured Text language in GX Works3, data types of an integer and a real number are converted

automatically with the following processing even when a different variable of data type or constant is described.

 • Assignment statement

 • Pass of the input argument to a function or function block

 • Arithmetic operational expression

The data type conversion is performed automatically to the data type of which range is larger.

Ex.

Assignment between Word [Signed] (INT) and Double Word [Signed] (DINT)

The type conversion is not performed automatically under the following situation. In this case, use a type

conversion function.

 • Type conversion for the integer which has same data size and different sign

 • Type conversion for the type of which data may be lost

 • Type conversion other than integer type and real number type

Data type that can be converted automatically
The following shows the combinations of data types which are converted automatically.

The data conversion is also performed automatically when passing the input argument to a standard function, standard

function block, and instruction.

The following shows the combinations of data types which are converted automatically when the input argument is defined as

the generic data type.

ST Operation result

dValue0 := wValue1;  The type conversion from INT to DINT is performed automatically.

wValue1 := dValue0;  A conversion error occurs since the data may be lost at conversion from DINT to INT.

wValue1 := DINT_TO_INT(dValue0);  Perform a type conversion from DTIN to INT using a type conversion function.

If the range of the value before conversion exceeds the range of INT type, an operation error occurs.

Data type before conversion Data type after conversion Remarks

Word [Signed] Double Word [Signed] The value is converted to the sign-extended value

automatically.

FLOAT [Single Precision] The value is converted to the same value before the

conversion automatically.FLOAT [Double Precision]

Word [Unsigned]/Bit String [16-bit] Double Word [Signed] The value is converted to the zero-extended value

automatically.Double Word [Unsigned]/Bit String [32-bit]

FLOAT [Single Precision] The value is converted to the same value before the

conversion automatically.FLOAT [Double Precision]

Double Word [Signed]

Double Word [Unsigned]/Bit String [32-bit]

FLOAT [Double Precision]

FLOAT [Single Precision]

Data type of variable (before conversion)
to be specified to argument

Data type definition of input argument Data type after conversion

Word [Signed] ANY32, ANY32_S Double Word [Signed]

ANY_REAL, ANY_REAL_32 FLOAT [Single Precision]

ANY_REAL_64 FLOAT [Double Precision]

Word [Unsigned]/Bit String [16-bit] ANY32, ANY32_U Double Word [Unsigned]/Bit String [32-bit]

ANY_REAL, ANY_REAL_32 FLOAT [Single Precision]

ANY_REAL_64 FLOAT [Double Precision]

Double Word [Signed]

Double Word [Unsigned]/Bit String [32-bit]

ANY_REAL, ANY_REAL_64 FLOAT [Double Precision]

FLOAT [Single Precision] ANY_REAL_64

4 HANDLING VARIOUS DATA TYPES
4.2 Integer and Real Number 27

4

Data type of the operation result of arithmetic expression
The operation result of an arithmetic operational expression (basic arithmetic operation) for the Structured Text language is

the same data type as the variable and constant of the operation target. (For an exponentiation (**), the operation result will be

a real number type.)

If the data type of the operator on the right side and left side differ, the data type of the operation result will be

a bigger data type.

 • Priority of the data type of an operation result (high to low): FLOAT [Double Precision], FLOAT [Single

Precision], Double Word, Word

[Singed] and [Unsigned] cannot be mixed in binary operation of the integer.

Considerations
If the value is outside the range of the data type which can be handled in the operation result, the accurate result (value)

cannot be reflected to the process after the operation.

Convert the data type of the variable for the operation target to the data type within the range of the operation result in

advance.

Ex.

Arithmetic operation of Word [Signed] (INT)

Division of integer and real number
For a division, the operation result may differ depending on the type of variable.

For a division of an integer type variable, the value of decimal place is cut off.

For a division of a real number type variable, the value of decimal place is calculated.

 • FLOAT [Single Precision]: 7 effective digits (6 digits of decimal places)

 • FLOAT [Double Precision]: 15 effective digits (14 digits of decimal places)

Ex.

Assign the operation result of the expression '(2  10)  10' to D0

For word devices, a data type can be specified by adding ':E' in the Structured Text language.

(Page 91 Type specification of word device)

Remainder of division (MOD)
Calculate the remainder of division by modulus operation (MOD).

Ex.

Calculate the lower two-digits of a five-digits integer

ST Operation result

dValue0 := wValue1 * 10;  If the operation result is out of the range of INT type (-32768 to 32767), the operation resulted in

overflow or underflow is assigned.

dValue1 := INT_TO_DINT(wValue1);

dValue0 := dValue1 * 10;

 Overflow or underflow does not occur since the operation is processed with DINT type.

dValue1 := INT_TO_DINT(wValue1) * 10; 

Data type ST Operation result

Integer Word [Signed] D0 := (2 / 10) * 10; 0

Real

number

FLOAT [Single Precision] D0:E := (2.0 / 10.0) * 10.0; 2.0

Data type ST Operation result

Integer Word [Signed] D0 := (-32368 MOD 100); -68

28
4 HANDLING VARIOUS DATA TYPES
4.3 Character String

4.3 Character String
Use a character string processing instruction and standard function (character string function) for the processing of the

variable of a character string type.

Program example

The length of a character string is calculated.

Assignment of character string
Describe a character string type variable using an assignment statement.

Program example

The character string 'ABC' is assigned to the sString0 (character string variable) and the wsString1 (character string [Unicode]

type variable).

Enclose ASCII character string constant in single quotes (').

Enclose Unicode character string constant in double quotes (").

Comparison of character strings
Describe a comparison operation (comparison, equality, inequality) of a character string type variable using an operator.

Program example

After the comparison of the character strings, the sString1 is assigned to the sString0 if the characters are not equal.

For the character string type variable, a comparison operator (<, >, <=, >=) compares the values using the

value of ASCII code or Unicode.

Depending on the first character code number of which inequality is detected, the comparison result of the

character string is determined.

The details of the comparison conditions are the same as the one as the character string comparison

instruction (LD$<, etc.)

ST

wLen0 := LEN(sString0);

ST

sString0 := 'ABC';

wsString1 := "ABC";

ST

IF sString0 <> sString1 THEN

sString0 := sString1;

END_IF;

4 HANDLING VARIOUS DATA TYPES
4.4 Time 29

4

4.4 Time
Time data is used for the time type variable or clock data (array data used for CPU module instructions).

Time type variable
By using the time type variable, an easy-to-see program in which time data in milliseconds is included can be created.

Describe the constant of time type as follows;

 • T#23d23h59m59s999ms

Time type variable can be set within the range from -T#24d20h31m23s648ms to T#24d20h31m23s647ms.

Assignment of time
Describe a time type variable using as assignment statement.

Program example

The value that indicates 1 hour 30 minutes is assigned to the tmData0 (time type variable).

Comparison of time
Describe a comparison operation (comparison, equality, inequality) of a time type variable using an operator.

Program example

If the time data is one day or more, the processing is ended.

Basic arithmetic expression for time
Describe a multiplication and division of the time type variable using a standard function (time data type function).

An addition or subtraction can be described using an operator.

Program example

The value in which 10 ms is added and doubled is assigned to the tmData0 (time type variable).

Item Day Hour Minute Second Millisecond

Range 0 to 24 0 to 23 0 to 59 0 to 59 0 to 999

ST

tmData0 := T#1h30m;

ST

IF tmData0 >= T#1d THEN

RETURN;

END_IF;

ST

tmData0 := MUL_TIME(tmData0 + T#10ms, 2);

30
4 HANDLING VARIOUS DATA TYPES
4.4 Time

Clock data (date and time)
Clock data is an array data that is used for CPU module instructions.

 • Clock data: An array that stores year, month, day, hour, minute, second, and day of week

 • Extended clock data: An array of which millisecond unit is added to a clock data

 • Date data: An array only for year, month, and day of clock data

 • Time data: An array only for hour, minute, and second of clock data

Clock instruction and clock data
Use the clock instruction of the application instruction to process a clock data (array of Word [Signed] data).

Program example

"year, month, day, hour, minute, second, and day of week" are read from the clock element of the CPU module.

Comparison of date data and time data
The comparison instruction for date data and time data cannot be used in ST programs. (Page 96 Instructions That

Cannot be Used in ST Programs)

To compare a date data and time data, compare each element of the array or convert the data to the time type variable.

ST

DATERD(TRUE, wArray);

[1]
[2]
[3]
[4]
[5]
[6]

wArray[0] (1980 to 2079)Year
(1 to 12)Month
(1 to 31)Day
(0 to 23)Clock elements Hour (24 hours)
(0 to 59)Minute
(0 to 59)Second
(0 to 6)Day of week

4 HANDLING VARIOUS DATA TYPES
4.5 Array and Structure 31

4

4.5 Array and Structure
An array and structure are the data format that can handle multiple data at once.

 • Array: A consecutive aggregation of same data type variables

 • Structure: A aggregation of different data type variables

Array
Describe only the label name when indicating whole array type variables.

When indicating each element of the array, describe the element number to be specified enclosing with '[]' as an index after

the label name.

Assignment of array
Describe an array type variable using the assignment statement to assign the value to the element specified by the index.

By describing the element without index, the value is assigned (copied) to the whole array elements.

Program example

The following data is assigned to the wArray1 (array type variable) of Word [Signed] data.

 • Array 0: 10

 • Array 1: Array [0,1] of two-dimensional array, wArray2

Program example

The whole elements of the wArray0 are assigned to the whole elements of the wArray1 (array type variable) of Word [Signed]

data.

(This program example can be described when the array data type and number of array data on the right side and left side are

the same.)

ST

wArray1[0] := 10;

wArray1[1] := wArray2[0, 1];

ST

wArray1 := wArray0;

bArray1(0..n)

[0]

[1]

[n]

bArray2(0..m, 0..n)

[0,0] [0,1] [0,n]

[1,0] [1,1]

[m,0] [m,n]

bArray1 [0] bArray2 [0,1]Display in program

Label name IndexLabel name Index

Type definition

32
4 HANDLING VARIOUS DATA TYPES
4.5 Array and Structure

Expression of array
Describe the elements of each array using an operational expression as a variable of the defined data type. (Comparison and

basic arithmetic expression can be described.)

However, the array type variable with no index cannot be used in the operational expression.

Array element can be described in an expression in the Structured Text language.

Program example

The following data is assigned to the wArray1 (array type variable) of the Word [Signed] data.

 • Element wIndex0+1: Sum of the element 0 and element 1 in the wArray0

Structure
Define the structure combining the multiple different data types as one data type.

Structure can be used for data management because the arbitrary name of structure type definition and name of each

member can be set.

When indicating whole structure type variables, describe only the label name.

When indicating each member of the structure, list the member names by adding a dot '.' after the label name.

Assignment of structure
Describe a structure type variable using the assignment statement to assign the value to the specified member.

By describing the structure without specifying the member, the value is assigned (copied) to the whole structures.

Program example

The following data is assigned to the member of the stData0 (structure type variable).

 • Member1 (FLOAT [Single Precision]): 10.5

 • Member2 (Bit): TRUE

Program example

All the elements of stData0 are assigned to all the elements of the stData1 (structure type variable).

(This program example can be described when the data type of the structure (structure type definition) on the right side and

left side are the same.)

ST

wArray1[wIndex0 +1] := wArray0[0] + wArray0[1];

ST

stData0.Member1 := 10.5;

stData0.Member2 := TRUE;

ST

stData1 := stData0;

stData0 . Member2

LabelDisplay in program Type definition

Label (stData0) Structure (StructureDefined)

Label name
Member (Member1)Entity of Member1

Member (Member2)Entity of Member2Member
name

Member (Member3)Entity of Member3

4 HANDLING VARIOUS DATA TYPES
4.5 Array and Structure 33

4

Data type combined with structure and array
A structure which includes array in the member and a structure type array can be used in ST programs.

Program example

The wArray1 (array type variable) is assigned to the wArray (array member) of the stData0 (structured type variable). (Both of

them are Word [signed] type and same size.)

Program example

The member of the element number 1 and the member of element number 0 in the stArray0 (structured array type variable)

are compared.

Structure arrays can be used in the assignment statement in GX Works3.

ST

stData0.wArray := wArray1;

ST

bResult := stArray0[1].Member1 > stArray0[0].Member1;

34
5 DESCRIBING LADDER PROGRAM IN STRUCTURED TEXT
5.1 Describing Contacts and Coils

5 DESCRIBING LADDER PROGRAM IN
STRUCTURED TEXT

This chapter explains how to describe ladder symbols and sequence instructions in the Structure Text language.

5.1 Describing Contacts and Coils
The program using contacts and coils of a ladder program can be described with the logical operations such as AND

operation, OR operation, and NOT operation and assignment statements in the Structured Text language.

Open contact and coil
Describe a program configured with an open contact and coil using an assignment statement.

Program example

The bResult0 turns ON/OFF according to the ON/OFF statue of the bFlag0.

Describe an assignment statement using ':='. The calculation result of a right side is stored to a variable on the

left side.

Closed contact (NOT)
Describe a closed contact with the operator of a NOT operation.

Program example

The bResult0 turns OFF when the bFlag0 is ON, and the bResult0 turns ON when the bFlag0 is OFF.

ST

bResult0 := bFlag0;

LD

ST

bResult0 := NOT bFlag0;

LD

bFlag0 bResult0

bFlag0 bResult0

5 DESCRIBING LADDER PROGRAM IN STRUCTURED TEXT
5.1 Describing Contacts and Coils 35

5

Series connection, parallel connection (AND, OR)
Describe the condition described in a series connection and parallel connection using AND operation(AND, &) or OR

operation.

Program example

The bResult0 turns ON when any of the following conditions is met.

 • Condition 1: The bFlag0 is ON and the bFlag1 is ON

 • Condition 2: The bFlag2 is ON

When multiple operational expressions are described in one statement, the operation is processed in order

from high priority operation.

 • Priority of logical operator (high to low): AND operation(AND, &), XOR operation, OR operation

When some operators of which priority is the same are used in one statement, the operators are operated in

order from the left.

ST

bResult0 := bFlag0 AND bFlag1 OR bFlag2;

LD

bFlag0 bFlag1 bResult0

bFlag2

36
5 DESCRIBING LADDER PROGRAM IN STRUCTURED TEXT
5.1 Describing Contacts and Coils

Contact and coil of which execution order are complicated
The complex combination of contacts and coils can be described in the Structured Text language. By using the parentheses (

), the statements of a complex execution order can be described clearly.

Program example

The bResult0 turns ON when the following condition 1 and condition 2 are met.

The bResult1 turns ON when the following condition 1, condition 2, and condition 3 are met.

 • Condition 1: Either the bFlag0 or the bFlag1 is ON

 • Condition 2: The bFlag2 is ON

 • Condition 3: The bFlag3 is ON

When the above program is executed, the ON/OFF timing of each device are as follows;

ST

bResult0 := (bFlag0 OR bFlag1) AND bFlag2;

bResult1 := bResult0 AND bFlag3;

LD

bFlag0 bFlag2 bResult0

bFlag1 bFlag3 bResult1

ON
OFF

ON
OFF

bResult0

bResult1

bFlag0 ON
OFF

bFlag1 ON
OFF

bFlag2 ON
OFF

bFlag3 ON
OFF

5 DESCRIBING LADDER PROGRAM IN STRUCTURED TEXT
5.2 Describing Instructions 37

5

5.2 Describing Instructions
In the Structured Text language, an instruction which can commonly be used with Ladder Diagram is handled as a function.

Some instructions which are not supported by the Structure Text language (Page 96 Instructions That Cannot be Used in

ST Programs) can be described using the format for the Structured Text language such as operators.

Instructions that can be used in ladder program and ST program
Basically, every instructions can be used in a ladder program and ST program. (Page 12 Instructions and Functions)

In accordance with the definitions of each instruction, describe the instruction as a function.

Program example

The bResult0 turns ON for one scan when the bFlag0 is turned ON from OFF.

Considerations when entering instructions
Despite the same function, some instruction names differ between Ladder Diagram and Structured Text. (Low-speed timer

instruction (OUT_T) of output instruction, etc.)

When entering an instruction name in the ST editor, the list of the instructions start with the character of the input instruction

name is displayed.

Check if the instruction name can be used in the ST program.

Considerations when entering arguments
The order of arguments for the same instruction may differ between Ladder Diagram and Structured Text.

The format of an instruction is displayed in tooltip when entering an argument in an ST editor.

Input the arguments in accordance with the tooltip.

For details on the instructions, refer to the programming manual. Press the  key with the cursor on the instruction to

display the page of the instruction.

ST

PLS(bFlag0, bResult0);

LD

bFlag0
PLS bResult0

Display by pressing the [F1] key

38
5 DESCRIBING LADDER PROGRAM IN STRUCTURED TEXT
5.2 Describing Instructions

Instructions that can be described using assignment statements
Describe a data conversion instruction using the type conversion function of a standard function and assignment statement.

Describe a character string transfer instruction ($MOV) using the assignment statement of a string type label.

Page 96 Instructions that can be described in assignment statement

Program example

The eValue0 (FLOAT [Single Precision]) is converted to the wValue1 (16-bit binary data with sign).

Program example

The sString0 (character string type variable) is transferred (assigned) to the sString1.

Instructions that can be described using operator
Describe basic instructions such as comparison operation instructions and arithmetic operation instructions using operators.

Page 96 Instructions that can be described with operator

Program example

Depending on the comparison result of the Word [Signed] (INT) valuable, the two values of Double Word [Signed] (DINT) are

added.

ST

wValue1 := REAL_TO_INT(eValue0);

LD

ST

sString1 := sString0;

LD

ST

IF (wValue0 < wValue1) AND (wValue2 > wValue3) OR (wValue4 <> wValue5) THEN

dValue1 := dValue0 + dValue1;

END_IF;

LD

AlwaysON
FLT2INT eValue0 wValue1

AlwaysON
$MOV sString0 sString1

< wValue0 wValue1 > wValue2 wValue3 D+ dValue0 dValue1

<> wValue4 wValue5

5 DESCRIBING LADDER PROGRAM IN STRUCTURED TEXT
5.3 Describing Statements of Ladder and Notes 39

5

Instructions that can be described in control statement and FUN/
FB
Describe FOR to NEXT instructions of the structured instructions using an iteration statement (Page 22 Iteration).

A program in which a pointer is specified using a subroutine program instruction (such as CALL) or a pointer branch

instruction (such as CJ, SCJ, and JMP) cannot be used in ST program. Structure the program using a selection statement,

function ,or function block.

Page 98 Instructions that can be described with control statement or function

END instruction is not required for the Structured Text language. (Page 98 Unnecessary instructions for

ST program)

5.3 Describing Statements of Ladder and Notes
Describe a statement and note of a ladder program as a comment.

The comment of the Structured Text language is more useful than statement and note since it can be described in arbitrary

position.

(* The processing is performed depending on the ten-key input. *)
IF G_wTenKey <> c_wNONE THEN
 CASE G_wTenKey OF
 0..9 : (* For number-key input (0 to 9) *)
 (* Add the input numeric value to the end of the display value. *)
 IF G_eDecimal = 0.0 THEN
 (* For integer part *)
 G_eDisplayValue := (G_eDisplayValue * 10) + G_wTenKey;
 ELSE
 (* For after decimal point *)
 G_eDisplayValue := G_eDisplayValue + (G_eDecimal * G_wTenKey);
 G_eDecimal := G_eDecimal * 0.1;
 END_IF;
 10: (* For input of decimal point key *)
 G_eDecimal := 0.1;
 11..14: (* For input of addition, subtraction, multiplication, or division key (11 to 14) *)
 (* Retain the operation type *)
 G_wOperation := G_wTenKey - 10;
 (* Move the display value to the previous operation value and then reset the displayed value *)
 G_eLastValue := G_eDisplayValue;
 G_eDisplayValue := 0.0;
 G_eDecimal := 0.0;
 15: (* For equal-key input *)
 (* Add, subtract, multiply, or divide the displayed value to/from the current value. *)
 G_eLastValue := Calculation(G_eLastValue, G_wOperation, G_eDisplayValue);
 (* Assign the rounding result to the display value. *)
 G_eDisplayValue := FractionProcessing(G_eLastValue, G_wSwitch1, G_wSwitch2);
 G_wOperation := 0; (* Clear the operation type *)
 G_eDecimal := 0.0;
 END_CASE;
 (* Clear the key input*)
 G_wTenKey := c_wNONE;
END_IF;

40
6 PROGRAM CREATION PROCEDURE
6.1 Overview of Procedure

6 PROGRAM CREATION PROCEDURE

6.1 Overview of Procedure
This section explains the creation procedure of a program.

1. Open an ST editor.

2. Edit the ST program.

3. Convert and debug the program.

4. Check the program in the CPU module.

For details on the operations of GX Works3, refer to the following manual.

 GX Works3 Operating Manual

6.2 Opening ST Editor
Create an ST program using the programming function of the engineering tool (GX Works3).

Select "ST" in "Program Language" and create a new project and program.

6.3 Editing ST Programs
This section explains a series of steps from creating a simple program to execute it.

Create the following program as an example.

Program example

GX Works3 CPU module
Write

Monitor

ST editor

6 PROGRAM CREATION PROCEDURE
6.3 Editing ST Programs 41

6

Entering texts
Enter texts in the same manner as a generic text editor in an ST editor.

Operating procedure

By pressing the ++ keys, the assignment symbol (:=) can be entered.

Other than the operation from the [Edit] menu, the following generic key operations can be used.

 • +/+: Cut/paste

 • +/+: Undo/redo

Copying/pasting data among editors
Text data can be copied/pasted among the generic text editors.

 • Utilizing the created programs by copying texts from other text editor or PDF and pasting them to an ST editor.

 • Creating documents by copying the programs created in an ST editor and pasting them to other text editor.

In GX Works3, the rectangle range can be selected by dragging the range while pressing the  key on the

ST editor.

Entering control statement
Enter the control statement (IF statement).

Operating procedure

The following functions are used in the operation procedure above.

 • [Edit]  [Display Template] (+)

 • [Edit]  [Mark Template (Left)] / [Mark Template (Right)] (++/)

1. Enter 'wValue0 := D10 - 123;'.

1. Enter 'IF'.

2. The syntax templates are displayed by pressing the

+ keys.

3. Move the cursor position on '?Condition?'.

(The cursor can be moved by pressing the ++ keys.)

4. Enter "wValue0 < 0" as a conditional expression.

5. Move the cursor position on '?Statement?'.

(The cursor can be moved by pressing the ++ keys.)

6. Enter "bFlag0 := TRUE;" as an execution statement.

 • If "TRUE" is entered in lower case, it will be changed to upper

case automatically.

Enter "bFlag0 := FALSE;" as well.

42
6 PROGRAM CREATION PROCEDURE
6.3 Editing ST Programs

Collapsing statements
Collapse the control statement () by clicking the icon () displayed on the left side of the control statement.

Entering comment
Enter a comment in the ST program.

Operating procedure

In GX Works3, '/**/' and '//', which are the same symbols as C language, can be used for comment.

By adding '//' in front of the statement, the statement is regarded as a comment.

By using the following functions, the comment out/disable comment out function can be performed in the

selected range.

 • [Edit]  [Comment Out of Selected Range]( +  + )

 • [Edit]  [Disable Comment Out of Selected Range]( +  + )

Collapsing comments
Collapse the comment () by clicking the icon () displayed on the left side of the comment.

1. Enter a comment in the arbitrary position in the

program. (In the figure on the left, enter a comment after

'bFlag0 := TRUE;'.)

 • A space or TAB can be inserted anywhere.

2. Enter the delimiter ('(*' and '*)') before and after the

comment.

The range enclosed with the symbols is regarded as a

comment.

Enter "(* OFF *)" after "FALSE" as well.

Range that statement is regarded as a comment by the line unit.

6 PROGRAM CREATION PROCEDURE
6.3 Editing ST Programs 43

6

Using labels
Register a label and use it in an ST program.

Registering labels
Register a label from an ST editor.

Operating procedure

The following function is used in the operation procedure above.

 • [Edit]  [Register Label]()

The colors for each configuration element on the ST editor can be set using the following function.

 • [View]  [Color and Font]

Unregistered label name is displayed as an error.

1. By pressing the  key on the label name, the

"Undefined Label Registration" screen is displayed.

2. Set the following items to register the label, wValue0.

 • Registered Destination: Local label

 • Class: VAR

 • Data Type: Word [Signed]

The registered label is displayed with the color for labels.

3. The registered label is set on the label setting screen.

44
6 PROGRAM CREATION PROCEDURE
6.3 Editing ST Programs

Registering labels on the label editor
Register labels on the label editor.

Operating procedure

Set the following items for the local label as the labels to be used in the program example.

Using registered labels on the ST editor
Enter a label on the ST editor by selecting a label registered on the label editor.

Operating procedure

1. Display the "Local Label Setting" screen.

2. Set the following items to register labels.

 • Label Name: bFlag0

 • Data Type: Bit

 • Class: VAR (automatically set)

3. The registered label is displayed with the color for labels

on the ST editor.

Label Name Data Type Class

wValue0 Word [Signed] VAR

wValue1 Word [Signed] VAR

bFlag0 Bit VAR

bResult Bit VAR

1. Register the bit type label, bResult.

2. Enter the first two letters ,"bR". The corresponding data

such as registered label names are displayed in a list.

3. Select a label name by pressing the  key and press

the  key to enter the selected label name.

6 PROGRAM CREATION PROCEDURE
6.3 Editing ST Programs 45

6

Creating functions and function blocks
Create a new POU (function and function block) to be used in a program.

Creating function
Create the new data of a function in the project, and define the function program and its local label.

■Creating new data
Create the new data of a function in the project.

Operating procedure

1. Select [Project]  [Data Operation]  [New Data].

2. Set the following items on the "New Data" screen.

The setting items of the created function can be checked on the "Properties" screen.

The "Properties" screen can be displayed with the following operation.

 • Select and right-click the data on the Navigation window and select [Property] from the shortcut menu.

■Setting argument and internal variable
Define the arguments and internal variables used in the function.

Set the arguments and internal variables in the local label of the function. Set the following items on the label setting screen.

A local label of which class is set to "VAR_INPUT" is an input argument.

A local label of which class is set to "VAR_OUTPUT" is an output argument.

The order of arguments when executing a function call will be the order defined in the local label setting.

Data Type Item Description Setting value in the program
example

Function Data Name An identifier for calling a function. FunPou

Program Language A language to describe a function program. ST

Result Type Set the data type to be returned after the completion of an

execution.

Bit

Use EN/ENO When "Yes" is selected, EN and ENO are added to the

arguments.

• EN: A boolean type input argument to which an execution

condition is to be set.

• ENO: A boolean type output argument to which an execution

result is to be returned.

No

FUN File of Add Destination Set the name of a file to which a function is to be created is

stored.

FUNFILE

Label Name Data Type Class

i_wValue Word [Signed] VAR_INPUT

bFlag Bit VAR

46
6 PROGRAM CREATION PROCEDURE
6.3 Editing ST Programs

Creating function block
Create the new data of a function block in the project, and define the function block program and its local label.

■Creating new data
Create new data of function block in the project.

Operating procedure

1. Select [Project]  [Data Operation]  [New Data].

2. Set the following items on the "New Data" screen.

The setting items of the created function block can be checked on the "Properties" screen.

The "Properties" screen can be displayed with the following operation.

 • Select and right-click the data on the Navigation window and select [Property] from the shortcut menu.

■Setting argument and internal variable
Define the arguments and internal variables to be used in the function block.

Set the arguments and internal variables in the local label of the function block. Set the following items on the label setting

screen.

A local label of which class is set to "VAR_INPUT" is an input argument.

A local label of which class is set to "VAR_OUTPUT" is an output argument.

Data Type Item Description Setting value in the program
example

Function Block Data Name A data type name of a function block to be defined. FbPou

Program Language A language to describe a function block program. ST

Use EN/ENO When "Yes" is selected, EN and ENO are added to the arguments.

• EN: A boolean type input argument to which an execution

condition is to be set.

• ENO: A boolean type output argument to which an execution

result is to be returned.

No

FB Type Set the conversion type of a function block. Macro type or

subroutine type can be selected.

Subroutine Type

FB File of Add Destination Set the name of a file to which a function block is to be created is

stored.

FBFILE

Label Name Data Type Class

i_wValue Word [Signed] VAR_INPUT

o_wValue Word [Signed] VAR_OUTPUT

6 PROGRAM CREATION PROCEDURE
6.3 Editing ST Programs 47

6

Entering function
Enter a function.

A function with a return value can be used as an expression. (Function call expression)

A function with no return value must be described as a call statement. (Function call statement)

Entering function call expression to assignment statement

■Assigning return value to variable
To assign the return value to the variable, describe a function call statement to the right side of the assignment statement.

■Entering function name
Select and enter a function name from the undefined functions.

Operating procedure

Instructions can also be entered from the list. (Page 37 Describing Instructions)

By pressing the  key on the instruction, the details of the instruction can be checked on the e-Manual

Viewer.

(To check the instructions, the files of the corresponding programming manuals are required to be registered

to e-Manual Viewer.)

1. Enter a variable to which a returned value is to be

assigned.

2. Enter the assignment symbol, ":=".

1. Enter the first three letters ,"Fun". The corresponding

functions are displayed in a list.

2. Select a label name by pressing the  key and press

the  key to enter the selected function name.

Function call statement

Display by pressing the [F1] key

48
6 PROGRAM CREATION PROCEDURE
6.3 Editing ST Programs

■Entering arguments
Enter the argument in accordance with the tooltip.

Operating procedure

For the defined function, the arguments can also be inserted using the template.

By pressing the + keys, the template of the selected function name is displayed.

The argument can be selected by the following functions.

 • [Edit]  [Display Template](+)

 • [Edit]  [Mark Template (Left)]/[Mark Template (Right)](++/)

Selecting functions from the Navigation window or the Element Selection window
Insert a function by selecting it from the Navigation window or the Element Selection window.

Insert a function from the Navigation window or the Element Selection window by dragging or dropping it to

the ST editor.

1. By entering "(", the format of the instruction is displayed

in the tooltip.

2. Enter the argument in accordance with the tooltip.

Delimit the multiple argument using commas ','.

3. Enter ")" at the end of the argument.

4. Enter ";" which indicates the end of the call statement.

Navigation
window

Element
Selection
window

Drag and drop

6 PROGRAM CREATION PROCEDURE
6.3 Editing ST Programs 49

6

Entering function block
Enter a function block.

Entering function block call statement

■Entering instance of function block
Enter the defined function block.

Operating procedure

■Entering arguments
Enter the argument in accordance with the tooltip.

Operating procedure

For the defined function block, the arguments can also be inserted using the template.

By pressing the + keys, the template of the selected instance name is displayed.

The argument can be selected by the following functions.

 • [Edit]  [Display Template](+)

 • [Edit]  [Mark Template (Left)]/[Mark Template (Right)](++/)

1. Enter the instance name, "FbPou_1" (example).

2. By pressing the  key on the instance name, the

"Undefined Label Registration" screen is displayed.

3. Set the following items and register the instance.

 • Registered Destination: Local label

 • Class: VAR

 • Data Type: FbPou

By selecting "Function Block" in "Type Category" at data type selection, the

defined function block can be selected.

The registered instance name is displayed with the color for

labels.

1. By entering "(", the format of function block is displayed

in the tooltip.

2. Enter the argument in accordance with the tooltip.

Delimit the multiple argument using commas ','.

3. Enter ")" at the end of the argument.

4. Enter ";" which indicates the end of the call statement.

50
6 PROGRAM CREATION PROCEDURE
6.3 Editing ST Programs

Selecting function blocks from the Navigation window or the Element Selection window
Insert a function block by selecting it from the Navigation window or the Element Selection window.

Insert a function block from the Navigation window or the Element Selection window by dragging or dropping

it to the ST editor.

Navigation
window

Element
Selection
window

Drag and drop

6 PROGRAM CREATION PROCEDURE
6.4 Converting and Debugging Programs 51

6

6.4 Converting and Debugging Programs
The created program is required to be converted to the code which can be executed in the CPU module of a programmable

controller (execution program).

An illegal program is checked at the conversion. Modify the program according to the displayed message.

Converting programs
Convert the created program to the executable code.

Operating procedure

1. Execute [Convert]  [Convert] ().

By performing the conversion (), only the added or changed program is converted.

When converting all programs including the converted programs, perform the following function.

 • [Convert]  [Rebuild All] (++)

Checking error/warning
An illegal program is checked at the conversion, and an error/warning message is displayed.

Convert the following program as an example.

Program example

Operating procedure

1. Double-click the error/warning message displayed on

the Output window.

2. The cursor is moved to the corresponding error location.

Modify the program according to the message.

The assignment symbol is different.

';' does not exist at the end of statement.

A return value is not used.

The output variable is ':='.

52
6 PROGRAM CREATION PROCEDURE
6.5 Checking Execution on CPU Module

If the program cannot be analyzed, check the statement above and below.

An error location is underlined.

If only a warning occurs, the conversion is completed.

6.5 Checking Execution on CPU Module
Execute the converted execution program by writing it to the CPU module of a programmable controller. Check if the program

is running properly by monitoring the running program.

Executing programs in the programmable controller
The following shows the procedure to execute an execution program in a CPU module.

Operating procedure

1. Connect a personal computer to the CPU module, and set the connection target in the engineering tool (GX Works3).

2. Change the operation status of the CPU module to 'STOP'.

3. Select [Online]  [Write to PLC] to write "Program".

 • Write "Parameter" according to change of the system or device settings.

 • When using global labels, write "Global Label Setting".

 • When using devices/labels of which initial values are set, write "Local Label Initial Value", "Global Label Initial Value", or

"Device Initial Value".

4. Reset the CPU module.

5. Change the operation status of the CPU module to 'RUN'.

';' does not exist at the end of statement.

Conversion is completed despite of occurrence of 'Warning'.

GX Works3 CPU module
Write

Monitor

6 PROGRAM CREATION PROCEDURE
6.5 Checking Execution on CPU Module 53

6

Checking the running program
The following shows how to check the running program on the program editor.

Operating procedure

Select [Online]  [Monitor]  [Start Monitoring]()/[Stop Monitoring](+).

Display of current values
The following shows the display of the monitoring value on the ST editor.

■Bit type
The monitoring values of bit types are displayed on the program as follows;

 • TRUE:

 • FALSE:

■Other than bit type
The monitoring values other than bit types are displayed on the right side of the split window.

Place the cursor on the device/label name to display a monitoring value on the tooltip.

Changing current values
The current value of the devices and labels can be changed with the following method.

Operating procedure

1. Select the device/label of which current value is to be changed on the ST editor.

2. Click the + keys. (Or double-click while pressing the  key)

The devices/labels other than bit type are registered to the Watch window. Change the current value on the Watch window.

■Changing current values on the Watch window
The current values of devices/labels registered to the Watch window can be changed by the following method.

Operating procedure

1. Select [Online]  [Watch]  [Start Watching](+)/[Stop Watching](++).

2. Enter a value to which "Current Value" is to be changed directly while monitoring.

Devices/labels can be registered to the Watch window by any of the following operations.

 • Drag and drop the devices/labels from the ST editor to the Watch window.

 • [Tool]  [Options]  "Monitor"  "ST Editor"  "Setting for Automatic Registration to Watch Window"

54
6 PROGRAM CREATION PROCEDURE
6.6 Inserting ST Program in Ladder Program (Inline structured text)

6.6 Inserting ST Program in Ladder Program (Inline
structured text)

When describing a part of a ladder program using an ST program, use the Inline structured text function. An ST program can

be described instead of the ladder instructions by using an inline structured text.

Operating procedure

1. Select [Edit]  [Inline Structured Text]  [Insert Inline Structured Text Box](+).

2. Edit the ST program in the inline structured text box.

For details on how to edit the program in an inline structured text box is the same as that of the ST editor.

3. Convert the ladder program.

Inline structured text is compiled (converted) as a part of the ladder program.

Enter 'STB' on the ladder entry dialog to insert an inline structured text box.

1 wAverage3 := (wValue0 + wValue1+ wValue2) / 3;AlwaysON

55

P
A

R
T

 2

PART 2 PROGRAM EXAMPLES

This part shows the examples of ST programming with simple functions.

7 OVERVIEW OF PROGRAM EXAMPLE

8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION AND SELECTION)

9 POSITIONING PROCESSING (EXPONENT FUNCTION, TRIGONOMETRIC FUNCTION AND

STRUCTURE)

10 SORTING OF DEFECTIVE PRODUCTS (ARRAY AND ITERATION PROCESSING)

11 MEASUREMENT OF OPERATING TIME (TIME AND CHARACTER STRING)

56
7 OVERVIEW OF PROGRAM EXAMPLE
7.1 List of Program Example

7 OVERVIEW OF PROGRAM EXAMPLE

This chapter explains the list of program examples and their usage.

7.1 List of Program Example
In the part 2, the following program examples are described using the simple applications.

Item Description Reference

Calculator

processing

Basic arithmetic

expression

Selection

Selection statement (IF)

Assignment of integer, real number, and boolean

value

Page 60 Initialization Program: Initialization

Selection statement (CASE)

Basic arithmetic expression

Page 61 Basic Arithmetic Operation (FUN): Calculation

Round down/round up/rounds off of integer Page 62 Rounding Processing (FUN): Rounding

Operation of integer and real number

Type conversion of integer and real number

Hierarchization of selection statement

Page 63 Fraction Processing (FUN): FractionProcessing

Page 65 Calculator Program: Calculator

Page 67 Post-Tax Price Calculation: IncludingTax

Positioning

processing

Exponent function

Trigonometric

function

Structure

Trigonometric function (TAN-1) Page 69 Rotation Angle Calculation (FUN): GetAngle

Structure type argument

Operation of structure

Exponent function (exponentiation, square root)

Page 70 Distance Calculation (FUN): GetDistance

Trigonometric function (COS, SIN)

Structure type return value

Page 71 X, Y-Coordinate Calculation (FUN): GetXY

Operation of integer and real number Page 72 Command Pulse Calculation (FB):

PulseNumberCalculation

Assignment of structure

Argument specification of structure

Page 73 Positioning Control: PositionControl

Sort of defective

products

Array

Iteration processing

Two dimensional array

Operation of array

Array type argument

Hierarchization of iteration statement and

selection statement

Page 76 Product Check (FB): ProductCheck

Structure which includes array type member

Structure array

Page 78 Sorting Product Data (FB): Assortment

Initialization of array element

Argument specification of array

Iteration statement (FOR, WHILE, REPEAT)

Page 79 Product Data Management: DataManagement

Measurement of

running time

Time

Character string

Time type data

Contact, coil, and current value of timer

Page 82 Operating Time Management: OperatingTime

Timer

Operation of boolean value

Page 83 Flicker Timer (FB): FlickerTimer

Page 84 Lamp ON/OFF: LampOnOff

Clock data (INT type array data) Page 85 Conversion from Sec. to Hour/Min/Sec:

SecondsToTimeArray

Time type data

String data

Page 86 Conversion from Time to String: TimeToString

7 OVERVIEW OF PROGRAM EXAMPLE
7.2 Applying Program Example in GX Works3 57

7

7.2 Applying Program Example in GX Works3
This manual shows the program examples to be created in the Structured Text language using GX Works3.

Considerations
The program examples described in this manual do not guarantee the actual operation.

When applying program examples to the actual system, make sure to match the program example with the system and its

required operation.

Assign the devices for the labels used in the program example according to the equipment to be used as necessary.

Set the parameters in accordance with the equipment or devices to be used as necessary.

Application procedure of sample program
Apply the sample program by the following procedure.

1. Set the global labels on the label editor. (Page 44 Registering labels on the label editor)

 • When using a structure, create a new structure definition and set the structure.

2. Create a POU.

 • Set the local labels. (Page 44 Registering labels on the label editor)

 • Apply a program example to the program. (Page 41 Copying/pasting data among editors)

When a POU defined in this manual is used in the sample program, create the function or the function block in the same

project. (Page 45 Creating new data)

3. Convert the program. (Page 51 Converting and Debugging Programs)

When reading this manual in PDF or e-Manual format, a sample program can easily be applied by copying

and pasting it.

58
8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION AND SELECTION)

8 CALCULATOR PROCESSING (BASIC
ARITHMETIC OPERATION AND SELECTION)

This chapter shows the program examples for the processing such as basic arithmetic operations and selections in the

program that enables calculator processing.

Create the following POUs in the program example.

Overview of function
The following processing are performed.

 • When the clear key is input, the current value (previous calculation result) and displayed value are initialized.

 • The displayed value is updated according to the input of the ten key. The value after decimal point is rounded depending on

the setting of the slide switches.

 • When the post-tax calculation key is input, a post-tax price is displayed.

Data name Data type Description Reference

Initialization Program block Initializes variables when a clear instruction is issued. Page 60 Initialization Program: Initialization

Calculation Function Adds, subtracts, multiplies, or divides two values. Page 61 Basic Arithmetic Operation (FUN):

Calculation

Rounding Function Rounds down/rounds up/rounds off a variable. Page 62 Rounding Processing (FUN): Rounding

FractionProcessing Function Rounds a value right after the specified decimal place. Page 63 Fraction Processing (FUN):

FractionProcessing

Calculator Program block Operates values in accordance with the input. Page 65 Calculator Program: Calculator

IncludingTax Program block Calculates post-tax price and amount of tax, and displays

the post-tax price when a post-tax calculation instruction is

issued.

Page 67 Post-Tax Price Calculation: IncludingTax

Device Number Name Description

(1) Decimal part

specification

switch

0 to 5 Specifies the number of digits after a decimal point to be

displayed.

The values after the specified digits are processed with

the setting of the Rounding processing switch.

Floating point (F) Displays values without rounding.

(2) Rounding

processing

switch

Round up () Adds 1 to the specified digit if the digit right after the

specified digit is other than 0.

Round off (5/4) Rounds off the value right after the specified digit.

Round down () Rounds down the value under the specified digits.

(3) Post-tax calculation key Calculates post-tax price.

(4) Clear key Initializes current value (previous calculation result) and

displayed value.

(5) Ten key 0 to 9, decimal

point (.)

Enters a numerical value.

+, -, *, / Specifies the type of basic arithmetic operation.

= Executes the specified basic arithmetic operation.

7 8 9
4 5 6
1 2
0

TAX

1234567
0 1 2 3 4 5 F

(1) (2)

(5)

C

5/4

3

(3) (4)

8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION AND SELECTION)
 59

8

Global labels to be used
The following shows the global labels and structure definitions used in the program example.

Set the following items in GX Works3.

■Global label

■Structure
Do not use.

Label Name Data Type Class Assign/Initial Value/
Constant

Comment

G_eDisplayValue FLOAT [Single Precision] VAR_GLOBAL  Display value

G_eLastValue FLOAT [Single Precision] VAR_GLOBAL  Current value (Previous calculation result)

G_wSwitch1 Word [Signed] VAR_GLOBAL  Setting value of switch (0 to 5: Number of decimal part, 6:

Floating point)

G_wSwitch2 Word [Signed] VAR_GLOBAL  Setting value of switch (0: Round down, 1: Round up, 2:

Round off)

G_bTax Bit VAR_GLOBAL  Post-tax calculation key input

G_bClear Bit VAR_GLOBAL  Clear-key input

G_wTenKey Word [Signed] VAR_GLOBAL  Ten-key input (0 to 9: Numerical value, 10: Decimal point, 11

to 14: Basic arithmetic operation, 15: =)

G_wOperation Word [Signed] VAR_GLOBAL  Operation type

G_eDecimal FLOAT [Single Precision] VAR_GLOBAL Initial Value: 0 Operation for decimal part

60
8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION AND SELECTION)
8.1 Initialization Program: Initialization

8.1 Initialization Program: Initialization
This program initializes variables when a clear instruction is issued.

Create a POU by setting the following items in GX Works3.

Program example

(* Initialize the variables when a clear instruction is issued. *)

IF G_bClear THEN

G_eDisplayValue := 0.0;

G_eLastValue := 0.0;

G_wOperation := 0;

G_eDecimal := 0.0;

G_bClear := FALSE;

END_IF;

The values of each variable at first execution depend on the label settings or the setting of the assigned

devices.

Global labels can be used in all programs in the project.

Statements in an IF statement are executed when its conditional expression is TRUE. It is not executed when

the conditional expression is FALSE.

Variable
Define the labels by setting the following items in GX Works3.

■Global label

■Local label
Do not use.

POU
Do not use.

Data Type Data Name Program Language Title

Program Block Initialization ST Initialization

Label Name Data Type Class Assign/Initial Value/
Constant

Comment

G_bClear Bit VAR_GLOBAL  Clear-key input

G_eDisplayValue FLOAT [Single Precision] VAR_GLOBAL  Display value

G_eLastValue FLOAT [Single Precision] VAR_GLOBAL  Current value (Previous calculation result)

G_wOperation Word [Signed] VAR_GLOBAL  Operation type

G_eDecimal FLOAT [Single Precision] VAR_GLOBAL Initial Value: 0 Operation for decimal part

8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION AND SELECTION)
8.2 Basic Arithmetic Operation (FUN): Calculation 61

8

8.2 Basic Arithmetic Operation (FUN): Calculation
This function performs basic arithmetic operation for two values according to the specified operation type.

Create a POU by setting the following items in GX Works3.

Program example

(* Add, subtract, multiply, or divide value 2 to/from value 1. *)

CASE i_wOperation OF

1: (* Operation type is addition: Operation result = Value 1 + Value 2 *)

Calculation := i_eValue1 + i_eValue2;

2: (* For subtraction *)

Calculation := i_eValue1 - i_eValue2;

3: (* For multiplication *)

Calculation := i_eValue1 * i_eValue2;

4: (* For division *)

IF i_eValue2 = 0.0 THEN (* If the value 2 is 0, do not operate. *)

Calculation := i_eValue1;

ELSE

Calculation := i_eValue1 / i_eValue2;

END_IF;

END_CASE;

CASE statement selects an execution statement depending on the condition of the integer value. The

statement which does not match the condition is not executed.

Selection statement (IF statement, CASE statement) can be hierarchized.

Variable
Define the labels by setting the following items in GX Works3. Result type can be set in the property of the function.

■Local label

■Result type

POU
Do not use.

Data Type Data Name Program Language Result Type EN/ENO Title

Function Calculation ST FLOAT [Single Precision] No Basic arithmetic operation

Label Name Data Type Class Initial Value/Constant Comment

i_eValue1 FLOAT [Single Precision] VAR_INPUT  Value 1

i_wOperation Word [Signed] VAR_INPUT  Operation type

i_eValue2 FLOAT [Single Precision] VAR_INPUT  Value 2

Identifier Data Type Description

Calculation FLOAT [Single Precision] Operation result

62
8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION AND SELECTION)
8.3 Rounding Processing (FUN): Rounding

8.3 Rounding Processing (FUN): Rounding
This function rounds down/rounds up/rounds off the first digit of an integer variable.

Create a POU by setting the following items in GX Works3.

Program example

(* Round the first digit with the specified rounding method. *)

CASE i_wType OF

0: (* Round down *)

Rounding := i_dValue / 10 * 10; (* Round down the first decimal place *)

1: (* Round up *)

Rounding := (i_dValue + 9) / 10 * 10; (* Round up the first decimal place *)

2: (* Round off *)

Rounding := (i_dValue + 5) / 10 * 10; (* Round off the first decimal place *)

ELSE (* Input value is returned when the value is other than specified value. *)

Rounding := i_dValue;

END_CASE;

For the division for an integer, the values after decimal point are rounded down.

Variable
Define the labels by setting the following items in GX Works3. Result type can be set in the property of the function.

■Local label

■Result type

POU
Do not use.

Data Type Data Name Program Language Result Type EN/ENO Title

Function Rounding ST Double Word [Signed] No Rounding processing

Label Name Data Type Class Initial Value/Constant Comment

i_wType Word [Signed] VAR_INPUT  Rounding method (0: Round down, 1: Round up, 2:

Round off)

i_dValue Double Word [Signed] VAR_INPUT  Input value

Identifier Data Type Description

Rounding Double Word [Signed] Operation result

8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION AND SELECTION)
8.4 Fraction Processing (FUN): FractionProcessing 63

8

8.4 Fraction Processing (FUN): FractionProcessing
This function rounds a value right after the specified decimal place.

Create a POU by setting the following items in GX Works3.

Program example

(* Round a value right after the specified decimal place. *)

(* If the specified digit is out of the range, return the input value. *)

IF (i_wDigits <= 0) OR (i_wDigits > c_wMAX) THEN

FractionProcessing := i_eValue;

RETURN; (* End processing *)

END_IF;

(* Move the decimal point in order that the specified value becomes the first place. *)

wDigits := i_wDigits + 1;

eValue := i_eValue * (10.0 ** wDigits) - 0.5;

(* Perform the specified rounding processing for the first digit of an integer value. *)

dValue := Rounding(i_wType, REAL_TO_DINT(eValue));

(* Change the value to the real number, and move the decimal point back to its original position. *)

FractionProcessing := DINT_TO_REAL(dValue) / (10.0 ** wDigits);

When converting a real number type to an integer type, use the type conversion function such as

REAL_TO_DINT.

The call expression of the type conversion function can be described for the terms and arguments of an

operational expression.

Variable
Define the labels by setting the following items in GX Works3. Result type can be set in the property of the function.

■Local label

■Result type

Data Type Data Name Program Language Result Type EN/ENO Title

Function FractionProcessing ST FLOAT [Single Precision] No Fraction processing

Label Name Data Type Class Initial Value/Constant Comment

i_eValue FLOAT [Single Precision] VAR_INPUT  Input value

i_wDigits Word [Signed] VAR_INPUT  Number of decimal part to be displayed (Decimal part: 0 to 5

digits)

i_wType Word [Signed] VAR_INPUT  Rounding method (0: Round down, 1: Round up, 2: Round off)

c_wMAX Word [Signed] VAR_CONSTANT Constant: 5 Maximum value of decimal place specification

wDigits Word [Signed] VAR  Digits of decimal part for processing (Decimal part: 1 to 6 digits)

eValue FLOAT [Single Precision] VAR  Real number value (for internal calculation)

dValue Double Word [Signed] VAR  Integer value (for internal calculation)

Identifier Data Type Description

FractionProcessing FLOAT [Single Precision] Operation result

64
8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION AND SELECTION)
8.4 Fraction Processing (FUN): FractionProcessing

POU
For details on the POUs used, refer to the following table.

Data name Data type Description Reference

Rounding Function Rounds down/rounds up/rounds off a variable. Page 62 Rounding Processing (FUN): Rounding

REAL_TO_DINT Standard function Conversion of REAL type  DINT type

Converts a value from REAL type data to DINT type data.

MELSEC iQ-R Programming Manual (Instructions,

Standard Functions/Function Blocks)

DINT_TO_REAL Standard function Conversion of DINT type  REAL type

Converts a value from DINT type data to REAL type data.

8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION AND SELECTION)
8.5 Calculator Program: Calculator 65

8

8.5 Calculator Program: Calculator
This program updates the displayed value according to the input of the ten key. The values after decimal point are rounded

depending on the setting of the Decimal place digit specification switch.

Create a POU by setting the following items in GX Works3.

Program example

(* The processing is performed depending on the ten-key input. *)

IF G_wTenKey <> c_wNONE THEN

CASE G_wTenKey OF

0..9 : (* For number-key input (0 to 9) *)

(* Add the input numeric value to the end of the display value. *)

IF G_eDecimal = 0.0 THEN

(* For integer part *)

G_eDisplayValue := (G_eDisplayValue * 10) + G_wTenKey;

ELSE

(* For after decimal point *)

G_eDisplayValue := G_eDisplayValue + (G_eDecimal * G_wTenKey);

G_eDecimal := G_eDecimal * 0.1;

END_IF;

10: (* For input of decimal point key *)

G_eDecimal := 0.1;

11..14: (* For input of addition, subtraction, multiplication, or division key (11 to 14) *)

(* Retain the operation type *)

G_wOperation := G_wTenKey - 10;

(* Move the display value to the previous operation value and then reset the displayed value *)

G_eLastValue := G_eDisplayValue;

G_eDisplayValue := 0.0;

G_eDecimal := 0.0;

15: (* For equal-key input *)

(* Add, subtract, multiply, or divide the displayed value to/from the current value. *)

G_eLastValue := Calculation(G_eLastValue, G_wOperation, G_eDisplayValue);

(* Assign the rounding result to the display value. *)

G_eDisplayValue := FractionProcessing(G_eLastValue, G_wSwitch1, G_wSwitch2);

G_wOperation := 0; (* Clear the operation type *)

G_eDecimal := 0.0;

END_CASE;

(* Clear the key input *)

G_wTenKey := c_wNONE;

END_IF;

If the data type of the operators on the right side and left side differ, the data type of the operation result will be

a bigger data type. (The operation result between INT type (Word [Signed]) and REAL type (FLOAT [Single

Precision]) will be the REAL type (FLOAT [Single Precision]).)

Data Type Data Name Program Language Title

Program Block Calculator ST Calculator

66
8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION AND SELECTION)
8.5 Calculator Program: Calculator

Variable
Define the labels by setting the following items in GX Works3.

■Global label

■Local label

POU
For details on the POUs used, refer to the following table.

Label Name Data Type Class Assign/Initial Value/
Constant

Comment

G_wTenKey Word [Signed] VAR_GLOBAL  Ten-key input (0 to 9: Numerical value, 10: Decimal point, 11

to 14: Basic arithmetic operation, 15: =)

G_eDecimal FLOAT [Single Precision] VAR_GLOBAL Initial Value: 0 Operation for decimal part

G_wOperation Word [Signed] VAR_GLOBAL  Operation type

G_eDisplayValue FLOAT [Single Precision] VAR_GLOBAL  Display value

G_eLastValue FLOAT [Single Precision] VAR_GLOBAL  Current value (Previous calculation result)

G_wSwitch1 Word [Signed] VAR_GLOBAL  Setting value of switch (0 to 5: Number of decimal part, 6:

Floating point)

G_wSwitch2 Word [Signed] VAR_GLOBAL  Setting value of switch (0: Round down, 1: Round up, 2:

Round off)

Label Name Data Type Class Initial Value/Constant Comment

c_wNONE Word [Signed] VAR_CONSTANT Constant: -1 No ten-key input

Data name Data type Description Reference

Calculation Function Adds, subtracts, multiplies, or divides a current value to

an input value.

Page 61 Basic Arithmetic Operation (FUN):

Calculation

FractionProcessing Function Calculates a value by selecting round down/round up/

round off at the specified decimal place.

Page 63 Fraction Processing (FUN):

FractionProcessing

8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION AND SELECTION)
8.6 Post-Tax Price Calculation: IncludingTax 67

8

8.6 Post-Tax Price Calculation: IncludingTax
This program calculates post-tax price and amount of tax, and displays the post-tax price when a post-tax calculation

instruction is issued.

Create a POU by setting the following items in GX Works3.

Program example

(* When a post-tax calculation instruction is issued, display the post-tax price. *)

IF G_bTax THEN

(* Calculate the amount of tax. (Calculate the values after decimal point as well.) *)

eTaxAmount := G_eDisplayValue * c_eTaxRate / 100.0;

(* Calculate the post-tax price. (Calculate the values after decimal point as well.) *)

G_eLastValue := G_eDisplayValue + eTaxAmount;

(* Set the post-tax price as a display value. (Values after decimal point are rounded off) *)

dPrice := REAL_TO_DINT(G_eLastValue);

G_eDisplayValue := DINT_TO_REAL(dPrice);

(* Clear the key input *)

G_bTax := FALSE;

END_IF;

When converting a real number type to an integer type, use the type conversion function such as

REAL_TO_DINT.

The data after type conversion using REAL_TO_DINT will be the value of which first decimal place is rounded

off of REAL type data.

Variable
Define the labels by setting the following items in GX Works3.

■Global label

■Local label

POU
For details on the POUs used, refer to the following table.

Data Type Data Name Program Language Title

Program Block IncludingTax ST Post-tax price calculation

Label Name Data Type Class Assign/Initial Value/
Constant

Comment

G_eDisplayValue FLOAT [Single Precision] VAR_GLOBAL  Display value

G_eLastValue FLOAT [Single Precision] VAR_GLOBAL  Current value (Previous calculation result)

G_bTax Bit VAR_GLOBAL  Post-tax calculation key input

Label Name Data Type Class Initial Value/Constant Comment

c_eTaxRate FLOAT [Single Precision] VAR_CONSTANT Constant: 8.0 Rate of tax (%)

eTaxAmount FLOAT [Single Precision] VAR  Amount of tax

dPrice Double Word [Signed] VAR  Post-tax price

Data name Data type Description Reference

REAL_TO_DINT Standard

function

Converting REAL to DINT

Converts a value from REAL type data to DINT type data.

MELSEC iQ-R Programming Manual (Instructions,

Standard Functions/Function Blocks)

DINT_TO_REAL Standard

function

Converting DINT to REAL

Converts a value from DINT type data to REAL type data.

68
9 POSITIONING PROCESSING (EXPONENT FUNCTION, TRIGONOMETRIC FUNCTION AND STRUCTURE)

9 POSITIONING PROCESSING (EXPONENT
FUNCTION, TRIGONOMETRIC FUNCTION AND
STRUCTURE)

This chapter shows the examples of programs for calculating position on an X, Y-coordinate and amount of rotation of a

device, and data processing using an exponent function, arithmetic operation of trigonometric function, or structure.

Create the following POUs in the program example.

Overview of function
This function calculates the rotation angle of the arm and number of command pulses of the motor for adjusting the length of

the arm in order to move the head of the arm to the target X, Y-coordinate with the following procedure.

Global labels to be used
The following shows the global labels and structure definitions used in the program example.

Set the following items in GX Works3.

■Global label

■Structure

Data name Data type Description Reference

GetAngle Function Calculates a rotation angle for the target X, Y-

coordinate.

Page 69 Rotation Angle Calculation (FUN):

GetAngle

GetDistance Function Calculates the distance between two points from X,

Y-coordinate.

Page 70 Distance Calculation (FUN):

GetDistance

GetXY Function Calculates X, Y-coordinate from radius and angle. Page 71 X, Y-Coordinate Calculation (FUN):

GetXY

PulseNumberCalculation Function block Calculates number of command pulses to a motor

from the movement amount.

Page 72 Command Pulse Calculation (FB):

PulseNumberCalculation

PositionControl Program block Calculates the angle and length of the arm to be

moved from the target X, Y-coordinate.

Page 73 Positioning Control: PositionControl

1. Rotate the arm towards the target specified in X, Y-coordinate.

2. Extend the head of the arm towards the target using a stepping motor.

Label Name Data Type Class Assign/Initial Value/
Constant

Comment

G_stTarget stPosition VAR_GLOBAL  Target (X, Y-coordinate)

G_stArm stPosition VAR_GLOBAL  Head of the arm (X, Y-coordinate)

G_eAngle FLOAT [Single Precision] VAR_GLOBAL  Rotation angle (Degree)

G_ePulses FLOAT [Single Precision] VAR_GLOBAL  Number of command pulses of the

motor

G_bOneScanOnly Bit VAR_GLOBAL Assign (Device/Label):

SM402

Turn ON for only 1 scan after RUN

Structure name Label Name Data Type Initial Value Comment

stPosition eXcoordinate FLOAT [Single Precision] 0.0 X-coordinate

eYcoordinate FLOAT [Single Precision] 0.0 Y-coordinate

X

Y

0 500.0 x

y Target (x, y)

Arm 2. Extend the head.

1. Revolve the arm.

9 POSITIONING PROCESSING (EXPONENT FUNCTION, TRIGONOMETRIC FUNCTION AND STRUCTURE)
9.1 Rotation Angle Calculation (FUN): GetAngle 69

9
9.1 Rotation Angle Calculation (FUN): GetAngle
This function calculates the rotation angle (0 to 180) for the target X, Y-coordinate.

Create a POU by setting the following items in GX Works3.

Program example

(* Calculate radian from X, Y-coordinate, and convert the radian to degree. *)

(* If X-coordinate is 0, 90 degree (End processing without calculation.) *)

IF i_eXcoordinate = 0.0 THEN

GetAngle := 90.0;

ENO := TRUE;

RETURN; (* End processing. *)

END_IF;

(* Calculate radian from X-coordinate and Y-coordinate. *)

eAngleRad := ATAN(i_eYcoordinate / i_eXcoordinate); (* Angle (radian) rad = ATAN (Y-coordinate/X-coordinate) *)

(* Error end if the data which cannot be handled with ATAN instruction is included *)

IF SD0 = H3402 THEN (* Error code : 3402H (Operation error) *)

ENO := FALSE;

RETURN; (* End processing *)

ELSE

ENO := TRUE;

END_IF;

(* Convert radian to degree. *)

GetAngle := eAngleRad * 180.0 / c_ePi; (* Angle (degree) = Angle (radian) rad * 180/pi *)

(* If X-coordinate is negative, add 180 degree. *)

IF i_eXcoordinate < 0.0 THEN

GetAngle := GetAngle + 180.0;

END_IF;

DEG instruction can be used for the conversion from single-precision real number radian to angle.

SD0 is a device for error check. The latest error code will be stored to it.

Variable
Define the labels by setting the following items in GX Works3. Result type can be set in the property of the function.

■Local label

Data Type Data Name Program Language Result Type EN/ENO Title

Function GetAngle ST FLOAT [Single Precision] Yes Rotation angle calculation

Label Name Data Type Class Initial Value/Constant Comment

i_eXcoordinate FLOAT [Single Precision] VAR_INPUT  X-coordinate

i_eYcoordinate FLOAT [Single Precision] VAR_INPUT  Y-coordinate

eAngleRad FLOAT [Single Precision] VAR  Angle (radian)

c_ePi FLOAT [Single Precision] VAR_CONSTANT Constant: 3.14159 Circular constant

X

Y

x

y

x

y
＝ATAN

Angle (radian) Angle (degree)Target (x, y)

= 90When x = 0:

θ 180When x > 0: ＝θ× π
Angle

180＝θ× + 180When x < 0: π

70
9 POSITIONING PROCESSING (EXPONENT FUNCTION, TRIGONOMETRIC FUNCTION AND STRUCTURE)
9.2 Distance Calculation (FUN): GetDistance

■Result type

POU
For details on the POU used, refer to the following table.

9.2 Distance Calculation (FUN): GetDistance
This function calculates the distance between two points from X, Y-coordinate.

Create a POU by setting the following items in GX Works3.

Program example

(* Calculate distance between two points from X, Y-coordinate. *)

GetDistance := SQRT((i_stPosition0.eXcoordinate - i_stPosition1.eXcoordinate) ** 2.0

+ (i_stPosition0.eYcoordinate - i_stPosition1.eYcoordinate) ** 2.0);

The argument of a structure can be specified for a function/function block.

Structure member can be specified to the operand (operation target value) of the operational experssion, and

left side and right side of the iteration statement.

**' is the operator of an exponentiation.

Variable
Define the labels by setting the following items in GX Works3. Result type can be set in the property of the function.

■Local label

■Result type

■Structure

POU
For details on the POUs used, refer to the following table.

Identifier Data Type Description

GetAngle FLOAT [Single Precision] Angle (degree): 0 to 180

Data name Data type Description Reference

ATAN Standard function TAN-1 operation

Outputs the arc tangent value (TAN-1) of an input

value.

MELSEC iQ-R Programming Manual (Instructions,

Standard Functions/Function Blocks)

Data Type Data Name Program Language Result Type EN/ENO Title

Function GetDistance ST FLOAT [Single

Precision]

No Distance calculation

Label Name Data Type Class Initial Value/Constant Comment

i_stPosition0 stPosition VAR_INPUT  Position 0 (X, Y-coordinate)

i_stPosition1 stPosition VAR_INPUT  Position 1 (X, Y-coordinate)

Identifier Data Type Description

GetDistance FLOAT [Single Precision] Distance between two points

Structure name Label Name Data Type Initial Value Comment

stPosition eXcoordinate FLOAT [Single Precision] 0.0 X-coordinate

eYcoordinate FLOAT [Single Precision] 0.0 Y-coordinate

Data name Data type Description Reference

SQRT Standard function Square root

Outputs the square root of an input value.

MELSEC iQ-R Programming Manual (Instructions,

Standard Functions/Function Blocks)

9 POSITIONING PROCESSING (EXPONENT FUNCTION, TRIGONOMETRIC FUNCTION AND STRUCTURE)
9.3 X, Y-Coordinate Calculation (FUN): GetXY 71

9
9.3 X, Y-Coordinate Calculation (FUN): GetXY
This function calculates X, Y-coordinate from the specified radius and angle.

Create a POU by setting the following items in GX Works3.

Program example

(* Convert the unit from degree to radian. *)

eAngleRad := i_eAngle * c_ePi / 180.0; (* Angle (radian) rad = Angle (degree) * pi/180 *)

(* Calculate X, Y-coordinate. *)

GetXY.eXcoordinate := i_eRadius * COS(eAngleRad); (* X-coordinate = Radius * COS(rad) *)

GetXY.eYcoordinate := i_eRadius * SIN(eAngleRad); (* Y-coordinate = Radius * SIN (rad) *)

A structure type can be specified to the Result Type of a function.

RAD instruction can be used for the conversion from single-precision real number angle to radian.

Variable
Define the labels by setting the following items in GX Works3. Result type can be set in the property of the function.

■Local label

■Result type

■Structure

POU
For details on the POUs used, refer to the following table.

Data Type Data Name Program Language Result Type EN/ENO Title

Function GetXY ST stPosition No X, Y-coordinate calculation

Label Name Data Type Class Initial Value/Constant Comment

i_eRadius FLOAT [Single Precision] VAR_INPUT  Radius (mm)

i_eAngle FLOAT [Single Precision] VAR_INPUT  Angle (degree): 0 to 180

eAngleRad FLOAT [Single Precision] VAR  Angle (radian)

c_ePi FLOAT [Single Precision] VAR_CONSTANT Constant: 3.14159 Circular constant

Identifier Data Type Description

GetXY stPosition X, Y-coordinate

Structure name Label Name Data Type Initial Value Comment

stPosition eXcoordinate FLOAT [Single Precision] 0.0 X-coordinate

eYcoordinate FLOAT [Single Precision] 0.0 Y-coordinate

Data name Data type Description Reference

COS Standard function COS operation

Outputs COS (cosine) of an input value.

MELSEC iQ-R Programming Manual (Instructions,

Standard Functions/Function Blocks)

SIN Standard function SIN operation

Outputs SIN (sine) of an input value.

X

Y

x

y

R

Angle (radian) X,Y coordinate

π x ＝ radius R × COS (θ)
Angle (degree) ×θ＝

180 y ＝ radius R × SIN (θ)

θ

72
9 POSITIONING PROCESSING (EXPONENT FUNCTION, TRIGONOMETRIC FUNCTION AND STRUCTURE)
9.4 Command Pulse Calculation (FB): PulseNumberCalculation

9.4 Command Pulse Calculation (FB):
PulseNumberCalculation

This function block calculates number of command pulses to a motor from the movement amount.

Create a POU by setting the following items in GX Works3.

Program example

(* Calculate the number of command pulses. *)

IF e1round <> 0.0 THEN

(* Number of command pulses = Motor resolution*(Target movement amount/Movement amount for one motor rotation) *)

o_ePulses := eResolution * (i_eDistance / e1round);

END_IF;

Variable
Define the labels by setting the following items in GX Works3.

■Local label

Set the initial values to the e1round and the eResolution in the local label setting in the used-side program.

Page 74 Local label

POU
Do not use.

Data Type Data Name Program Language EN/ENO Title

Function Block PulseNumberCalculation ST No Command pulse calculation

Label Name Data Type Class Initial Value/Constant Comment

i_eDistance FLOAT [Single Precision] VAR_INPUT  Target movement amount (mm)

o_ePulses FLOAT [Single Precision] VAR_OUTPUT  Number of command pulses of motor (pulse)

e1round FLOAT [Single Precision] VAR  Movement amount for one motor rotation (mm/rev)

eResolution FLOAT [Single Precision] VAR  Motor resolution (Pulse/rev)

9 POSITIONING PROCESSING (EXPONENT FUNCTION, TRIGONOMETRIC FUNCTION AND STRUCTURE)
9.5 Positioning Control: PositionControl 73

9
9.5 Positioning Control: PositionControl
This program calculates the angle and length of the arm to be moved from the target X, Y-coordinate.

Create a POU by setting the following items in GX Works3.

Program example

(* Calculate the rotation angle and number of command pulses of the motor for adjusting the length of the arm in order to

move the head of the arm to the target X, Y-coordinate. *)

(* Set the initial value to the coordinate of the arm only at the first time after RUN. *)

IF G_bOneScanOnly THEN

G_stArm.eXcoordinate := 500.0;

G_stArm.eYcoordinate := 0.0;

END_IF;

(* The position of the target will be set to the global variable, G_stTarget in other program. [The program is omitted in this

program example.] *)

(* Calculate the moving angle of the arm for the target X, Y-Coordinate. *)

eTargetAngle := GetAngle(TRUE, bResult1, G_stTarget.eXcoordinate, G_stTarget.eYcoordinate);

eArmAngle := GetAngle(bResult1, bResult2, G_stArm.eXcoordinate, G_stArm.eYcoordinate);

IF bResult2 THEN

G_eAngle := eTargetAngle - eArmAngle;

ELSE

RETURN; (* Error end *)

END_IF;

(* Calculate the current length of the arm (distance from origin) from the X, Y-coordinate of the head of the arm. *)

eDistance := GetDistance(G_stArm, stOrigin); (* Input variable is a function call of structure *)

(* Calculate the X, Y-coordinate of the head of the arm after the rotation. *)

G_stArm := GetXY(eDistance, G_eAngle); (* Return value is a function call of structure *)

(* Calculate the distance between two points from the X, Y-coordinate of the target and head of the arm. *)

eDistance := GetDistance(G_stTarget, G_stArm);

(* Calculate the number of command pulses to the motor for adjusting the length of the arm from the movement amount. *)

PulseNumberCalculation_1(i_eDistance := eDistance, o_ePulses => G_ePulses); (* Function block call *)

(* Rotate the arm by specifying the angle. [The program is omitted in this program example.] *)

(* Stretch the head of the arm by specifying the number of command pulses of the motor. [The program is omitted in this

program example.] *)

(* Update the coordinate of the arm. *)

G_stArm := G_stTarget;

When creating a function and function block, whether or not to use an EN and ENO can be selected.

If FALSE is specified to EN, the processing is not executed. ENO becomes FALSE.

Specify the output valuable using '=>' for a function block instance.

Data Type Data Name Program Language Title

Program Block PositionControl ST Positioning control

74
9 POSITIONING PROCESSING (EXPONENT FUNCTION, TRIGONOMETRIC FUNCTION AND STRUCTURE)
9.5 Positioning Control: PositionControl

Variable
Define the labels by setting the following items in GX Works3.

■Global label

■Local label

■Structure

In GX Works3, initial values can be set for each internal variable of function block instances.

To initialize structure type variables, set the initial values to the structure definition or create an initialization

program. For a global label, initial values can be set to the devices to be assigned.

POU
For details on the POU used, refer to the following table.

Label Name Data Type Class Assign/Initial Value/
Constant

Comment

G_bOneScanOnly Bit VAR_GLOBAL Assign (Device/Label):

SM402

Turn ON for only 1 scan after RUN

G_stTarget stPosition VAR_GLOBAL  Target (X, Y-coordinate)

G_stArm stPosition VAR_GLOBAL  Head of arm (X, Y-coordinate)

G_eAngle FLOAT [Single Precision] VAR_GLOBAL  Rotation angle (degree)

G_ePulses FLOAT [Single Precision] VAR_GLOBAL  Number of command pulses of motor

(pulse)

Label Name Data Type Class Initial Value/
Constant

Comment

eTargetAngle FLOAT [Single Precision] VAR  Angle to the target (degree): 0 to 180

eArmAngle FLOAT [Single Precision] VAR  Angle of arm (degree): 0 to 180

bResult1 Bit VAR  Operation result 1

bResult2 Bit VAR  Operation result 2

stOrigin stPosition VAR  Origin (X, Y-coordinate = 0. 0)

eDistance FLOAT [Single Precision] VAR  Distance

PulseNumberCalculation_1 PulseNumberCalculation VAR Initial Value

• e1round: 0.2

• eResolution: 3000.0

Calculation of number of command

pulses

Structure name Label Name Data Type Initial Value Comment

stPosition eXcoordinate FLOAT [Single Precision] 0.0 X-coordinate

eYcoordinate FLOAT [Single Precision] 0.0 Y-coordinate

Data name Data type Description Reference

GetAngle Function Calculates angle for the target X, Y-coordinate. Page 69 Rotation Angle Calculation (FUN):

GetAngle

GetXY Function Calculates X, Y-coordinate from radius and angle. Page 71 X, Y-Coordinate Calculation (FUN):

GetXY

GetDistance Function Calculates distance between two points from X, Y-

coordinate.

Page 70 Distance Calculation (FUN):

GetDistance

PulseNumberCalculation Function block Calculates number of command pulses to a motor

from the movement amount.

Page 72 Command Pulse Calculation (FB):

PulseNumberCalculation

10 SORTING OF DEFECTIVE PRODUCTS (ARRAY AND ITERATION PROCESSING)
 75

10

10 SORTING OF DEFECTIVE PRODUCTS (ARRAY
AND ITERATION PROCESSING)

This chapter shows the examples for an iteration statement using an array in the program which organizes multiple product

data.

Create the following POUs in the program example.

Overview of function
This function sorts product data into non-defectives and defectives by checking the data of the multiple products of which

sizes and weights are measured.

Data name Data type Description Reference

ProductCheck Function block Judges the products as non-defective or defective

from the product data.

Page 76 Product Check (FB): ProductCheck

Assortment Function block Sorts product data into non-defectives and

defectives.

Page 78 Sorting Product Data (FB): Assortment

DataManagement Program block Organizes product data. Page 79 Product Data Management: DataManagement

1. Measure the product.

This program example processes the data of two measured

values for eight products. Store the arbitrary value for the

measured value for the G_eValueArray (Measured values of

all products).

2. Check the measured values for each product.

 • Non-defective product: A product of which all measured

values are within the allowable range.

 • Defective product: A product of which measured value is

out of the allowable range.

3. Sort the product data into non-defectives and

defectives.

4. After checking all the products, acquire the data of non-

defective products and defective products.

Measurement
2Product: 0 1 Measured value 0

Measured value 1

OK

OK

NG

[0] [1]
[0,1] 1.0 100.0

0.5 98.7

1.2 100.5

1.0 100.0

0.5 98.7

1.2 100.5

0.9 99.8

[1,1]

[2,1]

[3,1]

[0,0]

[1,0]

[2,0]

[3,0]

1.0±0.5 100.0±1.0

Check the measured values of each product
Measured values of all
products

Acceptable range

Measured
value 0

Measured
value 1

Product
number: 0

Product
number: 1

Product
number: 2

1.0 100.0 1.2 100.5

0.5 98.7

[0] [1]

[0] [1] [0] [1]

[0] [1]

1

0 2

[0] [1]

[0] [1]

Product
numberProduct data

(non-defective
product) Measured

value

Product
numberProduct data

(defective
product) Measured

value

76
10 SORTING OF DEFECTIVE PRODUCTS (ARRAY AND ITERATION PROCESSING)
10.1 Product Check (FB): ProductCheck

Global labels to be used
The following shows the global labels and structure definitions used in the program example.

Set the following items in GX Works3.

■Global label

■Structure

10.1 Product Check (FB): ProductCheck
This function block checks if the value is within the allowable range.

Create a POU by setting the following items in GX Works3.

Program example

(* Check if the values of each element in the array are within the allowable range. *)

FOR wIndex := 0 TO (i_wValueNumber - 1) BY 1 DO

(* Calculate the upper and lower limit from the standard value and tolerance. *)

eMaxValue := i_eAcceptableArray[wIndex, c_wBasicSize] + i_eAcceptableArray[wIndex, c_wTolerance];

eMinValue := i_eAcceptableArray[wIndex, c_wBasicSize] - i_eAcceptableArray[wIndex, c_wTolerance];

(* Check the upper and lower limit. *)

IF (eMaxValue >= i_eValueArray[wIndex]) AND (eMinValue <= i_eValueArray[wIndex]) THEN

o_bResult := TRUE;

ELSE

o_bResult := FALSE;

EXIT; (* End processing when the value out of the range exists. *)

END_IF;

END_FOR;

The same data processing can be performed for the multiple elements of array by combining array type data

and iteration statement.

Specify the elements of each array using an operational expression as a variable of the defined data type.

Selection statement (IF statement, CASE statement) and iteration statement (FOR statement, WHILE

statement, REPEAT statement) can be hierarchized.

Label Name Data Type Class Assign/Initial Value/
Constant

Comment

G_eValueArray FLOAT [Single

Precision](0..7,0..1)

VAR_GLOBAL  Measured values for all products

(Values are stored in order of product

number.)

GC_wValueNumber Word [Signed] VAR_GLOBAL_CONSTANT Constant: 2 Number of measured values for one

product

GC_wTotalProduct Word [Signed] VAR_GLOBAL_CONSTANT Constant: 8 Total number of products

G_stProductArray stProduct(0..7) VAR_GLOBAL  Product data (non-defective product)

G_stDefectiveArray stProduct(0..7) VAR_GLOBAL  Product data (defective product)

Structure name Label Name Data Type Initial Value Comment

stProduct wProductNumber Word [Signed]  Product number

eValueArray FLOAT [Single

Precision](0..1)

 Measured value

Data Type Data Name Program Language EN/ENO Title

Function Block ProductCheck ST No Product check

10 SORTING OF DEFECTIVE PRODUCTS (ARRAY AND ITERATION PROCESSING)
10.1 Product Check (FB): ProductCheck 77

10

Variable
Define the labels by setting the following items in GX Works3.

■Local label

Global data can be used in a function block.

Array type data can be specified to an input variable.

POU
Do not use.

Label Name Data Type Class Initial Value/Constant Comment

i_eValueArray FLOAT [Single

Precision](0..1)

VAR_INPUT  Judgment value

i_eAcceptableArray FLOAT [Single

Precision](0..1,0..1)

VAR_INPUT  Allowable range

i_wValueNumber Word [Signed] VAR_INPUT  Number of measured values for one product

o_bResult Bit VAR_OUTPUT  Check result

c_wBasicSize Word [Signed] VAR_CONSTANT Constant: 0 Element number to which the standard value is to be

stored.

c_wTolerance Word [Signed] VAR_CONSTANT Constant: 1 Element number to which the tolerance is to be

stored.

eMaxValue FLOAT [Single Precision] VAR  Upper limit of judgment

eMinValue FLOAT [Single Precision] VAR  Lower limit of judgment

wIndex Word [Signed] VAR  Element number

78
10 SORTING OF DEFECTIVE PRODUCTS (ARRAY AND ITERATION PROCESSING)
10.2 Sorting Product Data (FB): Assortment

10.2 Sorting Product Data (FB): Assortment
This function block stores product data after sorting them into non-defective products and defective products.

Create a POU by setting the following items in GX Works3.

Program example

(* Sort the product data into non-defectives and defectives depending on the check result. *)

IF i_bCheck THEN

(* Non-defective product *)

(* Store the measured value to the Product data (non-defective product). *)

o_stProductArray[wTotal] := i_stProduct;

(* Increment the number of non-defective products *)

wTotal := wTotal + 1;

ELSE

(* Defective product *)

(* Store the measured value to the Product data (defective product). *)

o_stDefectiveArray[wDefectiveTotal] := i_stProduct;

(* Increment the number of defective products *)

wDefectiveTotal := wDefectiveTotal + 1;

END_IF;

(* Update yield rate *)

o_eYieldRatio := INT_TO_REAL(wTotal) / INT_TO_REAL(wTotal + wDefectiveTotal);

The structure which includes array in a member and array of structure type can be used in ST programs.

Variable
Define the labels by setting the following items in GX Works3.

■Local label

■Structure

POU
For details on the POU used, refer to the following table.

Data Type Data Name Program Language EN/ENO Title

Function Block Assortment ST No Sorting product data

Label Name Data Type Class Initial Value/Constant Comment

i_bCheck Bit VAR_INPUT  Check result

i_stProduct stProduct VAR_INPUT  Checked product data

o_stProductArray stProduct(0..7) VAR_OUTPUT  Product data (non-defective product)

o_stDefectiveArray stProduct(0..7) VAR_OUTPUT  Product data (defective product)

o_eYieldRatio FLOAT [Single Precision] VAR_OUTPUT  Yield rate

wTotal Word [Signed] VAR  Number of non-defective products

wDefectiveTotal Word [Signed] VAR  Number of defective products

Structure name Label Name Data Type Initial Value Comment

stProduct wProductNumber Word [Signed]  Product number

eValueArray FLOAT [Single

Precision](0..1)

 Measured value

Data name Data type Description Reference

INT_TO_REAL Standard function Convert of INT type  REAL

Converts a value from INT type data to REAL type data.

MELSEC iQ-R Programming Manual (Instructions,

Standard Functions/Function Blocks)

10 SORTING OF DEFECTIVE PRODUCTS (ARRAY AND ITERATION PROCESSING)
10.3 Product Data Management: DataManagement 79

10

10.3 Product Data Management: DataManagement
This program stores the measured values for each product with sorting non-defective products and defective products.

Create a POU by setting the following items in GX Works3.

Program example

(* Check the product data and sort them into non-defectives and defectives. *)

(* Set the allowable range to be checked. *)

Check_1.i_eAcceptableArray[0,0] := 1.0; (* Standard value of Measured value 0 *)

Check_1.i_eAcceptableArray[0,1] := 0.5; (* Tolerance of Measured value 0 *)

Check_1.i_eAcceptableArray[1,0] := 100.0; (* Standard value of Measured value 1 *)

Check_1.i_eAcceptableArray[1,1] := 1.0; (* Tolerance of Measured value 1 *)

Check_1.i_wValueNumber := GC_wValueNumber; (* Number of measured values for one product *)

(* Check the measured values for all products by iteration processing. *)

REPEAT

(* Processing each three product *)

wDataEnd := wProductNumber + 3;

(* If the remaining number of products are three or less, the processing is continued to the end. *)

IF wDataEnd > GC_wTotalProduct THEN

wDataEnd := GC_wTotalProduct;

END_IF;

(* Repeat judging and sorting for three products. *)

WHILE wProductNumber < wDataEnd DO

(* Acquire the measured values of the processing target. *)

FOR wIndex := 0 TO (GC_wValueNumber - 1) BY 1 DO

eValueArray[wIndex] := G_eValueArray[wProductNumber, wIndex];

END_FOR;

(* Judge the product as non-defective or defective from the product data. *)

Check_1(i_eValueArray := eValueArray, o_bResult => bResult);

(* Sort the product data into non-defectives and defectives depending on the result of the bResult (check result). *)

stProductData.wProductNumber := wProductNumber;

stProductData.eValueArray := eValueArray;

Assortment_1(i_bCheck := bResult, i_stProduct := stProductData);

(* Go to the next product number. *)

wProductNumber := wProductNumber + 1;

END_WHILE;

(* End processing under the following conditions. *)

UNTIL ((Assortment_1.o_eYieldRatio < c_eLimit) (* The yield rate is lower than the standard. *)

OR(wProductNumber >= GC_wTotalProduct)) (* Or, number of total products exceed the product number *)

END_REPEAT;

(* Acquire the product data sorted into non-defective products and defective products. *)

G_stProductArray := Assortment_1.o_stProductArray;

G_stDefectiveArray := Assortment_1.o_stDefectiveArray;

Different initial values cannot be set for each element of an array. Set the different values by a program.

For a function block, arguments can be specified before and after the call statement.

Selection statement (IF statement, CASE statement) and iteration statement (FOR statement, WHILE

statement, REPEAT statement) can be hierarchized.

Data Type Data Name Program Language Title

Program Block DataManagement ST Product data management

80
10 SORTING OF DEFECTIVE PRODUCTS (ARRAY AND ITERATION PROCESSING)
10.3 Product Data Management: DataManagement

Variable
Define the labels by setting the following items in GX Works3.

■Global label

■Local label

■Structure

POU
For details on the POUs used, refer to the following table.

Label Name Data Type Class Assign/Initial Value/
Constant

Comment

G_eValueArray FLOAT [Single

Precision](0..7,0..1)

VAR_GLOBAL  Measured values for all products

(Values are stored in order of product

number.)

GC_wValueNumber Word [Signed] VAR_GLOBAL_CONSTANT Constant: 2 Number of measured values for one

product

GC_wTotalProduct Word [Signed] VAR_GLOBAL_CONSTANT Constant: 8 Total number of products

G_stProductArray stProduct(0..7) VAR_GLOBAL  Product data (non-defective product)

G_stDefectiveArray stProduct(0..7) VAR_GLOBAL  Product data (defective product)

Label Name Data Type Class Initial Value/Constant Comment

wProductNumber Word [Signed] VAR  Product number (for internal iterative

processing)

wDataEnd Word [Signed] VAR  Data termination (for internal iterative

processing)

wIndex Word [Signed] VAR  Element number (for internal iterative

processing)

eValueArray FLOAT [Single

Precision](0..1)

VAR  Measured value

bResult Bit VAR  Checking result (for internal iterative

processing)

stProductData stProduct VAR  Checked product data

c_eLimit FLOAT [Single Precision] VAR_CONSTANT Constant: 0.8 Allowable yield rate

Check_1 ProductCheck VAR  Product check processing

Assortment_1 Assortment VAR  Sorting processing for product data

Structure name Label Name Data Type Initial Value Comment

stProduct wProductNumber Word [Signed]  Product number

eValueArray FLOAT [Single

Precision](0..1)

 Measured value

Data name Data type Description Reference

ProductCheck Function block Judges the products as non-defective or defective

from the product data.

Page 76 Product Check (FB): ProductCheck

Assortment Function block Sorts product data into non-defectives and

defectives.

Page 78 Sorting Product Data (FB): Assortment

11 MEASUREMENT OF OPERATING TIME (TIME AND CHARACTER STRING)
 81

11

11 MEASUREMENT OF OPERATING TIME (TIME
AND CHARACTER STRING)

This chapter shows the examples for processing timer or time data using the program for the device which turns ON a lamp

depending on the operating time and displays its operating time.

Create the following POU in the program example.

Overview of function
The following processing are performed.

1. Operating time of the device is counted in second unit.

2. The lamp is turned ON/OFF by judging the status of device from the operation status and operating time.

3. Operating time is converted to hour, minute, and second unit.

4. Operating time is converted to the character string for screen display.

Global labels to be used
The following shows the global labels and structure definitions used in the program example.

Set the following items in GX Works3.

■Global label

■Structure
Do not use.

Data name Data type Description Reference

OperatingTime Program block Counts operating time of a device in second unit. Page 82 Operating Time Management:

OperatingTime

FlickerTimer Function block Flashes the output signals alternately. Page 83 Flicker Timer (FB): FlickerTimer

LampOnOff Program block Turns the lamp ON/OFF depending on the device status. Page 84 Lamp ON/OFF: LampOnOff

SecondsToTimeArray Program block Calculates hour, minute, second from the time in second

unit.

Page 85 Conversion from Sec. to Hour/Min/

Sec: SecondsToTimeArray

TimeToString Program block Converts operating time (time type) to character string

for display.

Page 86 Conversion from Time to String:

TimeToString

Device Number Name Description

(1) Operation lamp Turns ON during the device is in operation.

OFF: Stopped, ON: Operating

If the operating time is three

weeks or more, the lamp flashes

alternately.(2) Warning lamp If the operating time is one week or more,

the lamp turns ON.

OFF: Normal, ON: Warning

(3) Screen display Displays operating time (day, hour, minute, second).

Label Name Data Type Class Assign/Initial Value/
Constant

Description

G_bOperatingStatus Bit VAR_GLOBAL  Operation status (TRUE: Operating,

FALSE: Stopped)

G_tmTime Time VAR_GLOBAL  Total operating time (Up to

T#24d20h31m23s647ms)

G_bOperationLamp Bit VAR_GLOBAL  Operation lamp (TRUE: ON, FALSE: OFF)

G_bWarningLamp Bit VAR_GLOBAL  Warning lamp (TRUE: ON, FALSE: OFF)

G_dSeconds Double Word [Signed] VAR_GLOBAL  Operating time (0 to 86399 seconds)

G_wTimeArray Word [Signed](0..2) VAR_GLOBAL  Operating time ([0]: Hour, [1]: Minute, [2]:

Second)

G_sDisplayedCharacters String(32) VAR_GLOBAL  Characters to be displayed on the

operating time display screen

G_bOneScanOnly Bit VAR_GLOBAL Assign (Device/Label): SM402 Turn ON for only 1 scan after RUN

(1) (2) (3)

Day
Time

10
12:34:56

82
11 MEASUREMENT OF OPERATING TIME (TIME AND CHARACTER STRING)
11.1 Operating Time Management: OperatingTime

11.1 Operating Time Management: OperatingTime
This program counts operating time of a device in second unit.

Create a POU by setting the following items in GX Works3.

Program example

(* Count the operating time for each one second. *)

bResult := OUT_T(G_bOperatingStatus, td1sTimer, 10); (* Timer setting value: 1000 ms *)

IF td1sTimer.S THEN (* After one second *)

(* Operating time (Timer type) count up *)

G_tmTime := G_tmTime + T#1000ms;

IF G_tmTime < T#0ms THEN (* If an overflow occurred *)

G_tmTime := T#0ms; (* Clear to 0 *)

END_IF;

(* Operating time (second unit) count up *)

G_dSeconds := G_dSeconds +1;

IF G_dSeconds >= 86400 THEN

G_dSeconds := 0; (* Clear to 0 if the time is reached at 24 hours *)

END_IF;

(* Reset the timer (Current value: 0, Contact: OFF) *)

RST(TRUE, td1sTimer.N);

RST(TRUE, td1sTimer.S);

END_IF;

Variable
Define the labels by setting the following items in GX Works3.

■Global label

■Local label

POU
For details on the POU used, refer to the following table.

Data Type Data Name Program Language Title

Program Block OperatingTime ST Operating time management

Label Name Data Type Class Assign/Initial Value/
Constant

Description

G_bOperatingStatus Bit VAR_GLOBAL  Operation status (TRUE: Operating,

FALSE: Stopped)

G_tmTime Time VAR_GLOBAL  Total operating time (Up to

T#24d20h31m23s647ms)

G_dSeconds Double Word [Signed] VAR_GLOBAL  Operating time (0 to 86399 seconds)

Label Name Data Type Class Initial Value/Constant Description

bResult Bit VAR  ENO for executing timer

td1sTimer Timer VAR  Timer for measuring one second

Data name Data type Description Reference

OUT_T Instruction Low-speed timer instruction

Starts time measurement when the operation result

up to the OUT instruction is ON and the coil is turned

ON.

MELSEC iQ-R Programming Manual (Instructions,

Standard Functions/Function Blocks)

11 MEASUREMENT OF OPERATING TIME (TIME AND CHARACTER STRING)
11.2 Flicker Timer (FB): FlickerTimer 83

11

11.2 Flicker Timer (FB): FlickerTimer
This function block flashes Output signal 0 and 1 alternately when the input signal is ON.

Create a POU by setting the following items in GX Works3.

Program example

(* Flash the Output signal 0 and 1 alternately. (Flip-flop circuit) *)

(* Calculate the setting value for the low-speed timer. *)

wInterval := TIME_TO_INT(i_tmInterval) / 100;

(* If the Timer 1 is OFF, turn the Timer 0 ON after the set time (ms). *)

bResult := OUT_T(NOT tdTimer1.S, tdTimer0, wInterval);

(* If the Timer 0 is turned ON from OFF, turn the Timer 1 ON after the set time (ms). *)

bResult := OUT_T(tdTimer0.S, tdTimer1, wInterval);

(* If the Timer 0 is ON, turn ON the Output signal 0. *)

o_bOutputSignal0 := tdTimer0.S;

(* If the Timer 0 is OFF, turn ON the Output signal 1. *)

o_bOutputSignal1 := NOT tdTimer0.S;

Set the timer setting value in order that the total values of scan time and timer limit setting are more than the

timer setting value. Timer limit setting can be set in the parameter of an engineering tool. (Default: 100 ms)

Variable
Define the labels by setting the following items in GX Works3.

■Local label

POU
For details on the POUs used, refer to the following table.

Data Type Data Name Program Language EN/ENO Title

Function Block FlickerTimer ST Yes Flicker timer

Label Name Data Type Class Initial Value/Constant Description

i_tmInterval Time VAR_INPUT  Switching interval

o_bOutputSignal0 Bit VAR_OUTPUT Initial Value: TRUE Output signal 0

o_bOutputSignal1 Bit VAR_OUTPUT Initial Value: TRUE Output signal 1

bResult Bit VAR  ENO for executing timer

wInterval Word [Signed] VAR  Low-speed timer setting value

tdTimer0 Timer VAR  Timer 0

tdTimer1 Timer VAR  Timer 1

Data name Data type Description Reference

OUT_T Instruction Low-speed timer instruction

Starts time measurement when the operation result

up to the OUT instruction is ON and the coil is turned

ON.

MELSEC iQ-R Programming Manual (Instructions,

Standard Functions/Function Blocks)

TIME_TO_INT Standard function Conversion of TIME type  INT type

Converts a value from TIME type data to INT type

data.

84
11 MEASUREMENT OF OPERATING TIME (TIME AND CHARACTER STRING)
11.3 Lamp ON/OFF: LampOnOff

11.3 Lamp ON/OFF: LampOnOff
This program turns the lamp ON/OFF depending on the device status.

Create a POU by setting the following items in GX Works3.

Program example

(* Turn the operation lamp ON/OFF according to the operation state. *)

G_bOperationLamp := G_bOperatingStatus;

(* Turn the warning lamp ON if the total operating time is one week (seven days) or more. *)

G_bWarningLamp := G_tmTime >= T#7d;

(* If the operating time is three weeks (21 days) or more *)

(* Turn the operation lamp and warning lamp alternately. *)

FlickerTimer_1(EN := G_tmTime >= T#21d, i_tmInterval := T#1000ms);

IF FlickerTimer_1.ENO THEN

G_bOperationLamp := FlickerTimer_1.o_bOutputSignal0;

G_bWarningLamp := FlickerTimer_1.o_bOutputSignal1;

END_IF;

Variable
Define the labels by setting the following items in GX Works3.

■Global label

■Local label

POU
For details on the POU used, refer to the following table.

Number Operation lamp Warning lamp Device status Remarks

(1) OFF OFF Normal Stopped Before operation

(2) ON OFF Operating Operating time: 0 to 7 days

(3) ON ON Warning Operating time: One week or more

(4) Flashing alternately Error Operating time: Three weeks or more

Data Type Data Name Program Language Title

Program Block LampOnOff ST Lamp ON/OFF

Label Name Data Type Class Assign/Initial Value/
Constant

Description

G_bOperatingStatus Bit VAR_GLOBAL  Operation status (TRUE: Operating,

FALSE: Stopped)

G_bOperationLamp Bit VAR_GLOBAL  Operation lamp (TRUE: ON, FALSE:

OFF)

G_bWarningLamp Bit VAR_GLOBAL  Warning lamp (TRUE: ON, FALSE: OFF)

G_tmTime Time VAR_GLOBAL  Total operating time (up to

T#24d20h31m23s647ms)

Label Name Data Type Class Initial Value/
Constant

Description

FlickerTimer_1 FlickerTimer VAR  Flicker timer

Data name Data type Description Reference

FlickerTimer Function block Flashes the output signals alternately. Page 83 Flicker Timer (FB): FlickerTimer

(1) (2) (3) (4)

11 MEASUREMENT OF OPERATING TIME (TIME AND CHARACTER STRING)
11.4 Conversion from Sec. to Hour/Min/Sec: SecondsToTimeArray 85

11

11.4 Conversion from Sec. to Hour/Min/Sec:
SecondsToTimeArray

This program calculates hour, minute, second from the time in second unit. The values of hour, minute, and second are stored

to the array type data (same format data as the argument of SEC2TIME (clock instruction)).

Create a POU by setting the following items in GX Works3.

Program example

(* Calculate hour, minute, second from the time in second unit. *)

G_wTimeArray[0] := GET_INT_ADDR(G_dSeconds / 3600); (* Hour *)

G_wTimeArray[1] := GET_INT_ADDR((G_dSeconds MOD 3600) / 60); (* Minute *)

G_wTimeArray[2] := GET_INT_ADDR((G_dSeconds MOD 3600) MOD 60); (* Second *)

MOD is a modulus operator.

Variable
Define the labels by setting the following items in GX Works3.

■Global label

■Local label
Do not use.

POU
For details on the POU used, refer to the following table.

Data Type Data Name Program Language Title

Program Block SecondsToTimeArray ST Conversion from sec. to h/m/s

Label Name Data Type Class Assign/Initial Value/
Constant

Description

G_dSeconds Double Word [Signed] VAR_GLOBAL  Operating time (0 to 86399 seconds)

G_wTimeArray Word [Signed](0..2) VAR_GLOBAL  Operating time ([0]: Hour, [1]: Minute,

[2]: Second)

Data name Data type Description Reference

GET_INT_ADDR Standard function Eliminate the need for type conversion

Outputs the input variable as INT type.

MELSEC iQ-R Programming Manual (Instructions, Standard

Functions/Function Blocks)

[0]

[1]
[2]

Data range
(0 to 23)Time (second unit) HourData range
(0 to 59)Minute(0 to 86399)
(0 to 59)Second

86
11 MEASUREMENT OF OPERATING TIME (TIME AND CHARACTER STRING)
11.5 Conversion from Time to String: TimeToString

11.5 Conversion from Time to String: TimeToString
This program converts operating time (time type) to character string for display.

Create a POU by setting the following items in GX Works3.

Program example

(* Convert the operating time to character string for display. *)

(* Initialize the internal variable. *)

IF G_bOneScanOnly THEN (* Execute only once after RUN *)

(* Initialize time unit (day, hour, minute, second in milliseconds). *)

dUnitArray[0] := TIME_TO_DINT(T#1d); (* Day *)

dUnitArray[1] := TIME_TO_DINT(T#1h); (* Hour *)

dUnitArray[2] := TIME_TO_DINT(T#1m); (* Minute *)

dUnitArray[3] := TIME_TO_DINT(T#1s); (* Second *)

(* Specify the digit of numeric value to be converted to a character string. *)

wDigitArray[0] := 2; (* Convert to character string for 2 digits *)

wDigitArray[1] := 0; (* No decimal point *)

END_IF;

sTimeString := ''; (* Initialize character string. *)

(* Convert the time type data to milliseconds. *)

dTime := TIME_TO_DINT(G_tmTime);

(* Processing the day, hour, minute, second in this order. *)

FOR wIndex := 0 TO 3 BY 1 DO

(* Convert the time (in milliseconds) to day/hour/minute/second. *)

wTime := DINT_TO_INT(dTime /dUnitArray[wIndex]);

dTime := dTime MOD dUnitArray[wIndex];

(* Convert the value of day/hour/minute/second to 2-digit character string. *)

STR(TRUE, wDigitArray, wTime, sItemString);

(* Set the character string to be added. *)

CASE wIndex OF

0 : sAdd := 'Day ';

1 : sAdd := '$nTime ';

2,3:sAdd := ':';

END_CASE;

(* Add a character string. *)

sTimeString := CONCAT(sTimeString, sAdd, sItemString);

END_FOR;

(* Set the created character string to the display character string. *)

G_sDisplayedCharacters := sTimeString;

Use TIME_TO_STRING of the standard function to convert the values (in milliseconds) to character string.

The program above converts the values to the character string after calculating the value for each day, time,

minute, and second.

'$n' is a linefeed code.

Data Type Data Name Program Language Title

Program Block TimeToString ST Conversion from Time to String

Day
Time

10
12:34:56

Character strings for display
Time (TIME) Data range

(0 to T#24d20h31m23s647ms)

11 MEASUREMENT OF OPERATING TIME (TIME AND CHARACTER STRING)
11.5 Conversion from Time to String: TimeToString 87

11

Variable
Define the labels by setting the following items in GX Works3.

■Global label

■Local label

POU
For details on the POUs used, refer to the following table.

Label Name Data Type Class Assign/Initial Value/
Constant

Description

G_tmTime Time VAR_GLOBAL  Total operating time (Up to

T#24d20h31m23s647ms)

G_bOneScanOnly Bit VAR_GLOBAL Assign (Device/Label):

SM402

Turn ON for only 1 scan after RUN

G_sDisplayedCharacters String(32) VAR_GLOBAL  Characters to be displayed on the

operating time display screen

Label Name Data Type Class Initial Value/
Constant

Description

dUnitArray Double Word [Signed](0..3) VAR  Unit (day, hour, minute, second in

milliseconds)

wDigitArray Word [Signed](0..1) VAR  Digit specification ([0]: Number of all digits,

[1]: Number of decimal place)

sTimeString String(32) VAR  Character string to be created (Day, hour,

minute, second)

dTime Double Word [Signed] VAR  Time (in milliseconds)

wIndex Word [Signed] VAR  Element number

wTime Word [Signed] VAR  Time (Day/hour/minute/second)

sItemString String(32) VAR  Character string of two-digit numeric value

for day/time/minute/second

sAdd String(32) VAR  Character string to be added

Data name Data type Description Reference

TIME_TO_DINT Standard function Conversion of TIME type  DINT type

Converts a value from TIME type data to DINT type data.

MELSEC iQ-R Programming Manual

(Instructions, Standard Functions/Function

Blocks)DINT_TO_INT Standard function Conversion of DINT type  INT type

Converts a value from DINT type data to INT type data.

STR Instruction Converts 16-bit binary data to character string by adding a

decimal point to the specified place of the data.

CONCAT Standard function Concatenation of string data

Concatenates character strings and outputs the result.

88
11 MEASUREMENT OF OPERATING TIME (TIME AND CHARACTER STRING)
11.5 Conversion from Time to String: TimeToString

MEMO

APPENDICES APPENDIX
Appendix 1 Specifications of Structured Text language 89

A

APPENDIX
Appendix 1 Specifications of Structured Text

language
This section explains the types of basic components and their descriptions used in the Structured Text language.

Statement
The following shows the types of statement and their description method.

Type Description method Description

Assignment statement An evaluation result of the right side is assigned to the

variable of the left side.

Subprogram control

statement

Call

statement

<Identifier>(argument 1, argument 2, ...) A function or function block is called.

RETURN

statement

RETURN; A program is ended.

Control

statement

Selection

statement

IF An execution statement is selected depending on the

condition of the boolean value.

If the Condition 1 is TRUE, the Statement 1 is executed.

If the Condition 1 is FALSE, the condition of ELSIF is

judged. If the Condition 2 is TRUE, the Statement 2 is

executed.

If the conditions both IF and ELSIF are FALSE, the

Statement 3 after ELSE is executed.

CASE An execution statement is selected depending on the

condition of the integer value.

If the result of the conditional expression is equals to the

Value 1, the Statement 1 is executed.

When specifying the range of an integer value to be

judged, use '..' to describe the statement. If the value of the

result of the conditional expression is within the range from

the Value 2 to the Value 3, the Statement 2 is executed.

If the result of the conditional expression is not equal to all

the integer values or their ranges, the Statement 3 after

ELSE is executed.

Iteration

statement

FOR The execution statement is executed for multiple times

depending on the end condition of the integer value.

Set the initial value to the Variable of an integer type first.

After that, the Statement is executed until the Variable

reaches the value of the End. The Increment value is

added to the variable each time when the Statement is

executed.

WHILE The execution statement is executed for multiple times

depending on the end condition of boolean value.

If the conditional expression is TRUE, the execution

statement is executed. The processing is repeated until the

result of the conditional expression becomes FALSE.

REPEAT The execution statement is executed for multiple times

depending on the end condition of boolean value.

The condition is judged after the execution of the execution

statement.

The processing is repeated until the result of the

conditional expression becomes TRUE.

Exit of iteration

statement

EXIT; Exits the iteration statement.

Empty statement ; Nothing is processed.

<Expression> ;<Variable> :=

Assign the result

IF <Condition 1> THEN
 <Statement 1>;

 ELSIF <Condition 2> THEN
 <Statement 2>;

 ELSE
 <Statement 3>;

END_IF;

Miltiple ELSIFs
(in the line frame)
are allowable.

ELSIF, ELSE
(in the dashed-line
frame) are omittable.

CASE <Condition> OF

 <Value 1> :
 <Statement 1>;

 <Value 2>..<Value 3> :
 <Statement 2>;

 ELSE
 <Statement 3>;

END_CASE;

Multiple statements
are allowable.

ELSE
(in the dashed-line
frame) is omittable.

FOR <Variable> := <Initial (expression)>

 TO <End (expression)>

 BY <Increment (expression)>

 DO <Statement>;

END_FOR;

BY (in the
dashed-line (thin)
frame) is omittable.

WHILE <Condition>
 DO
 <Statement>;
END_WHILE;

Repeat until the result becomes
FALSE

REPEAT
 <Statement>;
 UNTIL <Condition>
END_REPEAT;

Repeat until the result becomes
TRUE

90
APPENDICES APPENDIX
Appendix 1 Specifications of Structured Text language

Hierarchization of functions and function blocks can be performed up to 32 times in total.

Hierarchization of IF statement, CASE statement, WHILE statement, and REPEAT statement can be

performed up to 128 times in total.

Operator
The following shows the types of operators and their description method.

Up to 1024 operators can be described in one expression.

Priority
When multiple operational expressions are described in one statement, the operations are processed in order from a high

priority operator.

When some operators of which priority is the same are used in one statement, the operators are operated in order from the

left.

The operational expression in the brackets '()' is operated first.

Comment
The following shows the types of comments and their description method.

A comment symbol for the Structured Text language defined in IEC 61131-3 is (**) only, however, in GX

Works3, the same symbols as C language (/**/, //) can be described.

In GX Works2, the comment used (**) can only be used.

Type Operator Priority
(High to low)

Example

Generic mathematical
expression

ST

Exponentiation ** 1 B = CA eValueB := eValueC ** eValueA;

Inversion of sign - 2 B = - A eValueB := - eValueA;

Logical operation NOT operation NOT bFlagB := NOT bFlagA;

Basic arithmetic

expression

Multiplication * 3 A  B = C eValueC := eValueA * eValueB;

Division / A  B = C ... D eValueC := eValueA / eValueB;

Modulus operation MOD eValueC := eValueA MOD eValueB;

Addition + 4 A + B = C eValueC := eValueA + eValueB;

Subtraction - A - B = C eValueC := eValueA - eValueB;

Comparison

operation

Greater that, less than >, < 5 A > B bFlag := eValueA > eValueB;

Greater than or equal

to, less than or equal

to

>=, <= A  B bFlag := eValueA <= eValueB;

Equality = 6 A = B bFlag := eValueA = eValueB;

Inequality <> A  B bFlag := eValueA <> eValueB;

Logical operation AND operation AND, & 7 A  B bFlag := eValueA AND eValueB;

XOR operation XOR 8 A  B bFlag := eValueA XOR eValueB;

OR operation OR 9 A  B bFlag := eValueA OR eValueB;

Type Symbol Description Example

Multiple line comment (* *) The range from start symbol to end

symbol is regarded as a comment.

(* Comment *)

/* */ /* Comment */

Single line comment // The range from start symbol to end of

the line is regarded as a comment.

// Comment

B = A

APPENDICES APPENDIX
Appendix 1 Specifications of Structured Text language 91

A

Device
Specify devices in the same manner as a ladder program.

Device specification (digit specification, bit specification, and indirect specification) and index modification can be used.

A pointer cannot be used in ST program.

Contact/coil/current value of timer and counter
The devices such as timer and counter can be used by specifying their purpose to be used as a contact/coil/current value in

the Structured Text language.

When do not specify them, the devices are distinguished to be used as a contact/coil/current value automatically depending

on the instruction to be used.

Contact and coil are treated as a bit type. Current value is treated as the following data type.

Type specification of word device
Word device can be used by specifying its data type.

A device type specifier cannot be added to digit-specified devices or index-moidified devices.

Device Notation Data type of current value

No
specification

Contact Coil Current value

Timer T TS TC TN Word [Unsigned]/Bit String [16-bit]

Retentive timer ST STS STC STN

Counter C CS CC CN

Long timer LT LTS LTC LTN Double Word [Unsigned]/Bit String [32-bit]

Long retentive timer LST LSTS LSTC LSTN

Long counter LC LCS LCC LCN

Data type Device type
specifier

Example Description

Word [Unsigned]/Bit String [16-bit] :U D0:U The value of D0 is treated as the value of 16-bit WORD type.

Double Word [Unsigned]/Bit String [32-bit] :UD D0:UD The values of D10 and D1 are treated as the value of 32-bit

DWORD type.

Word [Signed] (None) D0 The value of D0 is treated as the value of 16-bit INT type.

Double Word [Signed] :D D0:D The values of D0 and D1 are treated as the value of 32-bit DINT

type.

FLOAT [Single Precision] :E D0:E The values of D0 and D1 are treated as the value of 32-bit REAL

type.

FLOAT [Double Precision] :ED D0:ED The values from D0 to D3 are treated as the value of 64-bit

LREAL type.

92
APPENDICES APPENDIX
Appendix 1 Specifications of Structured Text language

■Type conversion of word device
When the word device with no type specification is used for an argument of function or function block, the word device is

treated according to the data type of the argument definition. (Same as standard function, standard function block, and

instruction.)

The result may differ depending on the specification method for the argument since the type conversion is performed

automatically at the specification of the input argument.

Ex.

32-bit binary data transfer instruction (DMOV) (Instruction of which input argument and output argument are both ANY32

type)

 • D0 = 16#ABCD

 • D1 = 16#1234

 • Word [Signed] type label, G_wLabel to which D0 is assigned

When using a word device with no type specification in an operational expression, the data type is converted from Word

[Signed] automatically.

Page 26 Data type that can be converted automatically

ST Description Value to be
transferred

bResult := DMOV(TRUE, D0, D10); The 32-bit data stored to D0 and D1 are transferred to D10 and D11. 16#1234ABCD

bResult := DMOV(TRUE, D0:UD, D10:UD);

bResult := DMOV(TRUE, D0:U, D10); The integer value of Word [Unsigned]/Bit String [16-bit] type stored to D0 is converted

to Double Word [Signed] type automatically, and the zero-extended value is transferred

to D10 and D11.

16#0000ABCD

bResult := DMOV(TRUE, G_wLebel, D10); The integer value of Word [Signed] type stored to D0 is converted to Double Word

[Signed] type automatically, and the sing-extended value is transferred to D10 and D11.

16#FFFFABCD

bResult := DMOV(TRUE, D0:U, D10:U); A conversion error occurs in D10:U since the output variable cannot be converted

automatically.



APPENDICES APPENDIX
Appendix 1 Specifications of Structured Text language 93

A

Label
Specify labels in the same manner as a ladder program.

Bit specification (example: Lbl.3) and digit specification (example: K4Lbl) of labels can be used.

Pointer type labels cannot be used in an ST program.

Constant
The following shows the description method of constant.

*1 In the notation of integer and real numbers, the numbers can be separated using an underscore '_' to make programs easy to see. (The
underscores are ignored in program processing.)

*2 For the notation with K, H, or E added in front, underscores (_) cannot be used.
*3 By adding '+' or '-' right after the value for the real number with 'E' added, it is regarded as an index.

When describing it as an arithmetic operation, insert a space or tabulator between the value and operator.
(Example: 'E1.2+3' indicates 1200.0, and 'E1.2 +3' indicates 4.2.)

Using '$' in a character string type constant
When specifying linefeed using a character string type constant, add '$'.

Type Notation Example Example with '_'
added *1

Boolean value Describe a boolean value with TRUE or FALSE. TRUE, FALSE

Specify the value with 1 or 0. Each notation for integer can be applied. 2#0, 8#1, 0, H1

Integer Binary Add '2#' in front of a binary number. 2#0010, 2#01101010 2#111_1111_1111_1111

Octal Add '8#' in front of an octal number. 8#2, 8#152, 8#377 8#7_7777

Decimal Enter a decimal number directly. 2, 106, -1 32_767

Add 'K' in front of a decimal number. K2, K106, K-1 *2

Hexadecimal Add '16#' in front of a hexadecimal number. 16#2, 16#6A, 16#FF 16#7F_FF

Add 'H' in front of a hexadecimal number. H2, H6A, HFF *2

Real

number

Decimal

notation

Enter a real number directly. 1200.0, 0.012, -0.1 3.14_159

Add 'E' in front of a real number. E1200, E0.012, E-0.1 *2

Exponential

notation

Add 'E' between the mantissa part and exponent. 1.2E3, 1.2E-2, -1.0E-1 2.99_792_458E8

Add 'E' in front of the mantissa portion, and add '+' or '-' between the

mantissa part and exponent. *3
E1.2+3, E1.2-2, E-1.0-

1

*2

Character

string

ASCII

Shift-JIS

Enclose a character string in single quotes ('). 'ABC'

Unicode Enclose a character string in double quotes ("). "ABC"

Time Add 'T#' in front of a value. T#1h, T#1d2h3m4s5ms

Type Notation

Dollar sign($) $$

Single quote (') $'

Double quote (") $"

Line feed $L, $l

Newline $N, $n

Form feed (page) $P, $p

Carriage Return $R, $r

Tabulator $T, $t

94
APPENDICES APPENDIX
Appendix 1 Specifications of Structured Text language

Function and function block
Function and function block are the POUs in which a subroutine to be called from a program is defined.

The defined function can be used in a program block, function block, and other functions.

The defined function block can be used in the program block and other function blocks by creating an instance.

Argument
The following shows the description method of arguments in a call statement.

■Argument specification with actual argument
List the arguments by delimiting them with commas (,) in the brackets.

The template of a function is displayed in the following format. (Page 48 Entering arguments)

The order of the arguments will be the order defined in the local label setting of function definition or function block definition.

When function or function block is created with the setting to use EN/ENO, specify EN for the first argument and ENO for the

second one.

■Argument specification for assigning actual argument to formal argument
List the formal arguments and actual arguments by delimiting with commas (,) in the brackets.

The template of a function block is displayed in the following format. (Page 49 Entering arguments)

The names of formal arguments will be the variable names specified in the local label setting of function definition or function

block definition.

Specify 'EN' and 'ENO' as formal arguments for EN and ENO.

When assigning the actual argument to the formal argument, use the following format.

 • Input argument, input/output argument and EN: '<Formal argument name>:=<Expression>'

 • Output argument and ENO: '<Formal argument name>=><Variable>'

When assigning the actual argument to the formal argument, the order of the arguments can be changed arbitrary.

When specifying the argument by assigning the actual argument to the formal argument, the description of the

argument can be omitted.

■Argument specification before and after the call statement
For a function block, arguments can be specified before and after the call statement. Describe the assignment statement for

an input variable before the call statement, and describe an assignment statement for the output variable after the call

statement.

Actual argument of execution result
(expression of input value)

Actual argument of input
(expression of input value)

Actual argument of output
(variable to which the result is to be substituted)

Actual argument of execution result
(variable to which the result is to be substituted)

Actual argument
(expression of input value)

Actual argument
(variable to which the

result is to be substituted)

Actual argument
(expression of
input value)

Actual argument
(variable to which the

result is to be substituted)

Formal argument Formal argumentFormal
argument

Formal
argument

Input argumentExecution resultExecution statement Output argument

Description order of arguments are arbitrary

Substitution statement for input argument

Function block call statement Specify "<Instance name>.<Temporary argument name>"

Substitution statement for output variable

APPENDICES APPENDIX
Appendix 1 Specifications of Structured Text language 95

A

Return value
A function which has a return value returns the value to the call source after the completion of the execution.

■Data type of return value
Set the data type of a return value on the "New Data" screen or the "Properties" screen.

A function with no data type set is treated as a function with no return value.

A function with no return value must be described as a call statement. (Function call statement)

■Setting value to return value
Set the value to be returned as a return value to the variable of which function name is its identifier in the function.

Program example

The sum from i_wValue0 to i_wValue2 (input argument) are returned as a return value of FunAdd (function).

■Using return value in call source program
A function with return value can be handled as an expression. (Function call expression)

In the call source program of a function, operational expressions and conditional statements can be described using a

function call expression as a variable of return value data type.

Program example

The average from wValue0 to wValue2 are assigned to Average3.

FunAdd (function) returns the sum of wValue0 to wValue2 (input argument) as a return value.

EN and ENO
When creating a function and function block, whether or not to use an EN and ENO can be selected.

By using an EN (enable input) and ENO (enable output), the execution processing can be controlled.

 • EN: Set the execution condition.

 • ENO: Execution result is output.

EN/ENO is boolean type.

A function or function block with an EN is executed only when the execution condition of the EN is TRUE.

The following shows the values of output variable and return value depending on the state of EN and ENO.

■Setting value to ENO
To set the value of ENO, assign a boolean value to the variable, 'ENO' in a function or function block.

Program example

If an operation error occurs in the BCD instruction, the processing of function/function block is terminated and resulted in error

end.

ST (Program of function, FunAdd)

FunAdd := wValue0 + wValue1 + wValue2;

ST (Call source program)

Average3 := FunAdd(wValue0 , wValue1, wValue2) / 3;

EN ENO Output variable, returned value Remarks

TRUE TRUE Operation output value Normal completion

FALSE Undefined value Undefined value is returned when FALSE is assigned to the ENO during

processing.

The output value depends on the actual system.

FALSE FALSE • Function: Value at call

• Function block: Previous result

The processing is ended without execution.

Assignment of value to the input variable and output variable are not executed.

ST (Program of function/function block)

ENO := BCD(EN, wValue0, D0);

IF ENO = FALSE THEN

RETURN;

END_IF;

96
APPENDICES APPENDIX
Appendix 2 Instructions That Cannot be Used in ST Programs

Appendix 2 Instructions That Cannot be Used in ST
Programs

The following instructions, which are used in ladder programs, are described by using an operator or a control statement in ST

programs.

Instructions that can be described in assignment statement

*1 Only assignment statement can be used for transferring character string data, or for a data type that can be converted automatically
(Page 26 Type conversion which is performed automatically).

Instructions that can be described with operator

Instructions that can be described with arithmetic operator

Type Instruction symbol Corresponding type conversion function

Converting single-precision real number to 16-bit signed binary data FLT2INT(P) REAL_TO_INT(_E)

Converting single-precision real number to 16-bit unsigned binary data FLT2UINT(P) (REAL_TO_DINT(_E), DINT_TO_WORD(_E))

Converting single-precision real number to 32-bit signed binary data FLT2DINT(P) REAL_TO_DINT(_E)

Converting single-precision real number to 32-bit unsigned binary data FLT2UDINT(P) (REAL_TO_DINT(_E), DINT_TO_DWORD(_E))

Converting double-precision real number to 16-bit signed binary data DBL2INT(P) LREAL_TO_INT(_E)

Converting double-precision real number to 16-bit unsigned binary data DBL2UINT(P) (LREAL_TO_DINT(_E), DINT_TO_WORD(_E))

Converting double-precision real number to 32-bit signed binary data DBL2DINT(P) LREAL_TO_DINT(_E)

Converting double-precision real number to 32-bit unsigned binary data DBL2UDINT(P) (LREAL_TO_DINT(_E), DINT_TO_DWORD(_E))

Converting 16-bit signed binary data to 16-bit unsigned binary data INT2UINT(P) INT_TO_WORD(_E)

Converting 16-bit signed binary data to 32-bit signed binary data INT2DINT(P) INT_TO_DINT(_E)*1

Converting 16-bit signed binary data to 32-bit unsigned binary data INT2UDINT(P) INT_TO_DWORD(_E)

Converting 16-bit unsigned binary data to 16-bit signed binary data UINT2INT(P) WORD_TO_INT(_E)

Converting 16-bit unsigned binary data to 32-bit signed binary data UINT2DINT(P) WORD_TO_DINT(_E)*1

Converting 16-bit unsigned binary data to 32-bit unsigned binary data UINT2UDINT(P) WORD_TO_DWORD(_E)*1

Converting 32-bit signed binary data to 16-bit signed binary data DINT2INT(P) DINT_TO_INT(_E)

Converting 32-bit signed binary data to 16-bit unsigned binary data DINT2UINT(P) DINT_TO_WORD(_E)

Converting 32-bit signed binary data to 32-bit unsigned binary data DINT2UDINT(P) DINT_TO_DWORD(_E)

Converting 32-bit unsigned binary data to 16-bit signed binary data UDINT2INT(P) DWORD_TO_INT(_E)

Converting 32-bit unsigned binary data to 16-bit unsigned binary data UDINT2UINT(P) DWORD_TO_WORD(_E)

Converting 32-bit unsigned binary data to 32-bit signed binary data UDINT2DINT(P) DWORD_TO_DINT(_E)

Transferring string data $MOV(P) *1

Transferring Unicode string data $MOV(P)_WS *1

Converting 16-bit signed binary data to single-precision real number INT2FLT(P) INT_TO_REAL(_E)*1

Converting 16-bit unsigned binary data to single-precision real number UINT2FLT(P) (WORD_TO_INT(_E), INT_TO_REAL(_E))*1

Converting 32-bit signed binary data to single-precision real number DINT2FLT(P) DINT_TO_REAL(_E)

Converting 32-bit unsigned binary data to single-precision real number UDINT2FLT(P) (DWORD_TO_DINT(_E), DINT_TO_REAL(_E))

Converting double-precision real number to single-precision real number DBL2FLT(P) LREAL_TO_REAL(_E)

Converting 16-bit signed binary data to double-precision real number INT2DBL(P) INT_TO_LREAL(_E)*1

Converting 16-bit unsigned binary data to double-precision real number UINT2DBL(P) (WORD_TO_DINT(_E), DINT_TO_LREAL(_E))*1

Converting 32-bit signed binary data to double-precision real number DINT2DBL(P) DINT_TO_LREAL(_E)*1

Converting 32-bit unsigned binary data to double-precision real number UDINT2DBL(P) (DWORD_TO_DINT(_E), DINT_TO_LREAL(_E))*1

Converting single-precision real number to double-precision real number FLT2DBL(P) REAL_TO_LREAL(_E)*1

Type Instruction symbol

Adding 16-bit binary data +(P)(_U) [Using two operands]

Subtracting 16-bit binary data -(P)(_U) [Using two operands]

Adding 32-bit binary data D+(P)(_U) [Using two operands]

Subtracting 32-bit binary data D-(P)(_U) [Using two operands]

Multiplying 16-bit binary data *(P)(_U)

APPENDICES APPENDIX
Appendix 2 Instructions That Cannot be Used in ST Programs 97

A

Instructions that can be described with logical operator and comparison operator

Dividing 16-bit binary data /(P)(_U)

Multiplying 32-bit binary data D*(P)(_U)

Dividing 32-bit binary data D/(P)(_U)

Adding BCD 4-digit data B+(P) [Using two operands]

Subtracting BCD 4-digit data B-(P) [Using two operands]

Adding BCD 8-digit data DB+(P) [Using two operands]

Subtracting BCD 8-digit data DB-(P) [Using two operands]

Multiplying BCD 4-digit data B*(P)

Dividing BCD 4-digit data B/(P)

Multiplying BCD 8-digit data DB*(P)

Dividing BCD 8-digit data DB/(P)

Adding 16-bit binary block data BK+(P)(_U)

Subtracting 16-bit binary block data BK-(P)(_U)

Adding 32-bit binary block data DBK+(P)(_U)

Subtracting 32-bit binary block data DBK-(P)(_U)

Concatenating string data $+(P) [Using two operands]

Adding single-precision real numbers E+(P) [Using two operands]

Subtracting single-precision real numbers E-(P) [Using two operands]

Adding double-precision real numbers ED+(P) [Using two operands]

Subtracting double-precision real numbers ED-(P) [Using two operands]

Multiplying single-precision real numbers E*(P)

Dividing single-precision real numbers E/(P)

Multiplying double-precision real numbers ED*(P)

Dividing double-precision real numbers ED/(P)

Adding clock data DATE+(P)

Subtracting clock data DATE-(P)

Adding expansion clock data S(P).DATE+

Subtracting expansion clock data S(P).DATE-

Type Instruction symbol

Operation start, series connection, parallel connection LD, LDI, AND, ANI, OR, ORI

Ladder block series/parallel connection ANB, ORB

Comparing 16-bit binary data LD(_U), AND(_U), OR(_U)

Comparing 32-bit binary data LDD(_U), ANDD(_U), ORD(_U)

Comparing 16-bit binary block data BKCMP(P)(_U)

Comparing 32-bit binary block data DBKCMP(P)(_U)

Performing an AND operation on 16-bit data WAND(P) [Using two operands]

Performing an AND operation on 32-bit data DAND(P) [Using two operands]

Performing an OR operation on 16-bit data WOR(P) [Using two operands]

Performing an OR operation on 32-bit data DOR(P) [Using two operands]

Performing an XOR operation on 16-bit data WXOR(P) [Using two operands]

Performing an XOR operation on 32-bit data DXOR(P) [Using two operands]

Performing an XNOR operation on 16-bit data WXNR(P) [Using two operands]

Performing an XNOR operation on 32-bit data DXNR(P) [Using two operands]

Comparing string data LD$, AND$, OR$

Comparing single-precision real numbers LDE, ANDE, ORE

Comparing double-precision real numbers LDED, ANDED, ORED

Comparing date data LDDT, ANDDT, ORDT

Comparing time data LDTM, ANDTM, ORTM

Type Instruction symbol

98
APPENDICES APPENDIX
Appendix 2 Instructions That Cannot be Used in ST Programs

Instructions that can be described with control statement or
function

Unnecessary instructions for ST program

Type Instruction symbol

Performing the FOR to NEXT instruction loop FOR, NEXT

Pointer branch CJ, SCJ, JMP

Jumping to END GOEND

Returning from the interrupt program IRET

Forcibly terminating the FOR to NEXT instruction loop BREAK(P)

Calling a subroutine program CALL(P)

Returning from the subroutine program called RET

Calling a subroutine program and turning the output OFF FCALL(P)

Calling a subroutine program in the specified program file ECALL(P)

Calling a subroutine program in the specified program file and turning the

output OFF

EFCALL(P)

Calling a subroutine program XCALL

Type Instruction symbol

Ending the sequence program END

No operation (NOP) NOP, NOPLF

99

I

INDEX

A

Argument . 45,46,94
Assignment statement 13,15,89

B

Boolean . 25
Break character . 11

C

Call statement . 13,89
CASE . 21,89
Comment . 11,42,90
Constant . 11,93
Control statement 13,41,89
Conversion. 51

D

Device . 91

E

Empty statement. 13
EN/ENO. 45,46,95
Expression . 14

F

FOR . 24,89
Function. 12,45,47,94
Function block 12,46,49,94

H

Hierarchization . 13,90

I

IF . 19,89
Inline structured text . 54
Iteration statement 13,22,89

L

Label . 43,93

M

Monitor . 53

O

Operator . 11,90

R

REPEAT . 22,89
Result type. 45

RETURN . 13,89
Return value .95

S

Selection statement 13,19,89
ST editor .40
Statement . 13,89
Subprogram control statement 13,89

T

Token .11
Type conversion .26

V

Variable. .11

W

WHILE . 22,89

100

MEMO

101

REVISIONS
*The manual number is given on the bottom left of the back cover.

Japanese manual number: SH-081445-D

 2015 MITSUBISHI ELECTRIC CORPORATION

Revision date *Manual number Description

February 2015 SH(NA)-081483ENG-A First edition

April 2015 SH(NA)-081483ENG-B ■Added or modified parts

TERMS, Section 6.3, Appendix 1

May 2016 SH(NA)-081483ENG-C ■Added or modified parts

Section 1.2, Section 10.1, Section 10.3

This manual confers no industrial property rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held

responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

102

TRADEMARKS
Unicode is either a registered trademark or a trademark of Unicode, Inc. in the United States and other countries.

The company names, system names and product names mentioned in this manual are either registered trademarks or

trademarks of their respective companies.

In some cases, trademark symbols such as '' or '' are not specified in this manual.

SH(NA)-081483ENG-C(1605)KWIX

MODEL: R-ST-GUIDE-E

MODEL CODE: 13JX28

Specifications subject to change without notice.

When exported from Japan, this manual does not require application to the
Ministry of Economy, Trade and Industry for service transaction permission.

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

	SAFETY PRECAUTIONS
	CONDITIONS OF USE FOR THE PRODUCT
	INTRODUCTION
	CONTENTS
	RELEVANT MANUALS
	TERMS
	PART 1 ST PROGRAMMING
	1 WHAT IS STRUCTURED TEXT?
	1.1 International Standard IEC 61131-3
	1.2 Features of Structured Text Language
	1.3 Proper Use for Programming Languages

	2 BASIC RULES FOR DESCRIPTION
	2.1 Characters
	Character code
	Basic component (Token)

	2.2 Instructions and Functions
	2.3 Statement and Expression
	Statement
	Expression

	3 DESCRIBING PERSPICUOUS PROGRAMS IN STRUCTURED TEXT
	3.1 Operational Expressions
	Assignment (:=)
	Basic arithmetic operations (+, -, *, /)
	Advanced operations (exponent function, trigonometric function)
	Logical operation (AND, OR, XOR, NOT)
	Comparison (<, >, <=, >=), equality/inequality (=,<>)

	3.2 Selection
	Selection by boolean value (IF)
	Selection (CASE) by integer

	3.3 Iteration
	Iteration by boolean condition (WHILE, REPEAT)
	Iteration by integer value (FOR)

	4 HANDLING VARIOUS DATA TYPES
	4.1 Boolean Value
	4.2 Integer and Real Number
	Value of range
	Type conversion which is performed automatically
	Data type of the operation result of arithmetic expression
	Division of integer and real number

	4.3 Character String
	4.4 Time
	Time type variable
	Clock data (date and time)

	4.5 Array and Structure
	Array
	Structure
	Data type combined with structure and array

	5 DESCRIBING LADDER PROGRAM IN STRUCTURED TEXT
	5.1 Describing Contacts and Coils
	Open contact and coil
	Closed contact (NOT)
	Series connection, parallel connection (AND, OR)
	Contact and coil of which execution order are complicated

	5.2 Describing Instructions
	Instructions that can be used in ladder program and ST program
	Instructions that can be described using assignment statements
	Instructions that can be described using operator
	Instructions that can be described in control statement and FUN/FB

	5.3 Describing Statements of Ladder and Notes

	6 PROGRAM CREATION PROCEDURE
	6.1 Overview of Procedure
	6.2 Opening ST Editor
	6.3 Editing ST Programs
	Entering texts
	Entering control statement
	Entering comment
	Using labels
	Creating functions and function blocks
	Entering function
	Entering function block

	6.4 Converting and Debugging Programs
	Converting programs
	Checking error/warning

	6.5 Checking Execution on CPU Module
	Executing programs in the programmable controller
	Checking the running program

	6.6 Inserting ST Program in Ladder Program (Inline structured text)

	PART 2 PROGRAM EXAMPLES
	7 OVERVIEW OF PROGRAM EXAMPLE
	7.1 List of Program Example
	7.2 Applying Program Example in GX Works3

	8 CALCULATOR PROCESSING (BASIC ARITHMETIC OPERATION AND SELECTION)
	8.1 Initialization Program: Initialization
	8.2 Basic Arithmetic Operation (FUN): Calculation
	8.3 Rounding Processing (FUN): Rounding
	8.4 Fraction Processing (FUN): FractionProcessing
	8.5 Calculator Program: Calculator
	8.6 Post-Tax Price Calculation: IncludingTax

	9 POSITIONING PROCESSING (EXPONENT FUNCTION, TRIGONOMETRIC FUNCTION AND STRUCTURE)
	9.1 Rotation Angle Calculation (FUN): GetAngle
	9.2 Distance Calculation (FUN): GetDistance
	9.3 X, Y-Coordinate Calculation (FUN): GetXY
	9.4 Command Pulse Calculation (FB): PulseNumberCalculation
	9.5 Positioning Control: PositionControl

	10 SORTING OF DEFECTIVE PRODUCTS (ARRAY AND ITERATION PROCESSING)
	10.1 Product Check (FB): ProductCheck
	10.2 Sorting Product Data (FB): Assortment
	10.3 Product Data Management: DataManagement

	11 MEASUREMENT OF OPERATING TIME (TIME AND CHARACTER STRING)
	11.1 Operating Time Management: OperatingTime
	11.2 Flicker Timer (FB): FlickerTimer
	11.3 Lamp ON/OFF: LampOnOff
	11.4 Conversion from Sec. to Hour/Min/Sec: SecondsToTimeArray
	11.5 Conversion from Time to String: TimeToString

	APPENDIX
	Appendix 1 Specifications of Structured Text language
	Statement
	Operator
	Comment
	Device
	Label
	Constant
	Function and function block

	Appendix 2 Instructions That Cannot be Used in ST Programs
	Instructions that can be described in assignment statement
	Instructions that can be described with operator
	Instructions that can be described with control statement or function
	Unnecessary instructions for ST program

	INDEX
	REVISIONS
	TRADEMARKS

