MITSUBISHI ELECTRIC

General-Purpose AC Servo

MITSUBISHI SERVO AMPLIFIERS \& MOTORS
MELSERV/O-J4
General-Purpose Interface AC Servo MODEL
MR-J4-_A -RJ
MR-J4-03A6-RJ
SERVO AMPLIFIER
INSTRUCTION MANUAL
(POSITIONING MODE)

- Safety Instructions

Please read the instructions carefully before using the equipment.

To use the equipment correctly, do not attempt to install, operate, maintain, or inspect the equipment until you have read through this Instruction Manual, Installation guide, and appended documents carefully. Do not use the equipment until you have a full knowledge of the equipment, safety information and instructions. In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".
\triangle WARNING

\triangle CAUTION

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

Indicates that incorrect handling may cause hazardous conditions, resulting in medium or slight injury to personnel or may cause physical damage.

Note that the CAUTION level may lead to a serious consequence according to conditions. Please follow the instructions of both levels because they are important to personnel safety. What must not be done and what must be done are indicated by the following diagrammatic symbols.

Indicates what must not be done. For example, "No Fire" is indicated by

Indicates what must be done. For example, grounding is indicated by

In this Instruction Manual, instructions at a lower level than the above, instructions for other functions, and so on are classified into "POINT".
After reading this Instruction Manual, keep it accessible to the operator.

1. To prevent electric shock, note the following

© WARNING

Before wiring or inspection, turn off the power and wait for 15 minutes or more until the charge lamp turns off. Then, confirm that the voltage between $\mathrm{P}+$ and N - is safe with a voltage tester and others. Otherwise, an electric shock may occur. In addition, when confirming whether the charge lamp is off or not, always confirm it from the front of the servo amplifier.

- Ground the servo amplifier and servo motor securely.
- Any person who is involved in wiring and inspection should be fully competent to do the work.
-Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, it may cause an electric shock.
Do not operate switches with wet hands. Otherwise, it may cause an electric shock.
The cables should not be damaged, stressed, loaded, or pinched. Otherwise, it may cause an electric shock.
-During power-on or operation, do not open the front cover of the servo amplifier. Otherwise, it may cause an electric shock.
-Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging area are exposed and you may get an electric shock.
- Except for wiring and periodic inspection, do not remove the front cover of the servo amplifier even if the power is off. The servo amplifier is charged and you may get an electric shock.
- To prevent an electric shock, always connect the protective earth (PE) terminal (marked $(\underset{\sigma}{ }$) of the servo amplifier to the protective earth (PE) of the cabinet.
To avoid an electric shock, insulate the connections of the power supply terminals.

2. To prevent fire, note the following

. CAUTION

Olnstall the servo amplifier, servo motor, and regenerative resistor on incombustible material. Installing them directly or close to combustibles will lead to a fire or smoke generation.

- Always connect a magnetic contactor between the power supply and the main circuit power supply (L1, L2, and L3) of the servo amplifier, in order to configure a circuit that shuts down the power supply on the side of the servo amplifier's power supply. If a magnetic contactor is not connected, continuous flow of a large current may cause smoke or a fire when the servo amplifier malfunctions.
- In order to configure a circuit that shuts down the power supply on the side of the servo amplifier's power supply, always connect one molded-case circuit breaker or fuse per one servo amplifier between the power supply and the main circuit power supply (L1, L2, and L3) of a servo amplifier. If a moldedcase circuit breaker or fuse is not connected, continuous flow of a large current may cause smoke or a fire when the servo amplifier malfunctions.
-When using the regenerative resistor, switch power off with the alarm signal. Otherwise, a regenerative transistor malfunction or the like may overheat the regenerative resistor, causing smoke or a fire.
- Provide adequate protection to prevent screws and other conductive matter, oil and other combustible matter from entering the servo amplifier and servo motor.

3. To prevent injury, note the following

\triangle CAUTION

Only the voltage specified in the Instruction Manual should be applied to each terminal. Otherwise, a burst, damage, etc. may occur.

- Connect cables to the correct terminals. Otherwise, a burst, damage, etc. may occur.
- Ensure that polarity (+/-) is correct. Otherwise, a burst, damage, etc. may occur.
- The servo amplifier heat sink, regenerative resistor, servo motor, etc. may be hot while power is on or for some time after power-off. Take safety measures, e.g. provide covers, to avoid accidentally touching the parts (cables, etc.) by hand.

4. Additional instructions

The following instructions should also be fully noted. Incorrect handling may cause a malfunction, injury, electric shock, fire, etc.

(1) Transportation and installation

1. CAUTION

Transport the products correctly according to their mass.
-Stacking in excess of the specified number of product packages is not allowed.

- Do not hold the front cover when transporting the servo amplifier. Otherwise, it may drop.

Olnstall the servo amplifier and the servo motor in a load-bearing place in accordance with the Instruction Manual.
-Do not get on or put heavy load on the equipment.

- The equipment must be installed in the specified direction.
- Leave specified clearances between the servo amplifier and the cabinet walls or other equipment.
-Do not install or operate the servo amplifier and servo motor which have been damaged or have any parts missing.
- Do not block the intake and exhaust areas of the servo amplifier. Otherwise, it may cause a malfunction.
- Do not drop or strike the servo amplifier and servo motor. Isolate them from all impact loads.
- When you keep or use the equipment, please fulfill the following environment.

Item		Environment
Ambient temperature	Operation	$0{ }^{\circ} \mathrm{C}$ to $55{ }^{\circ} \mathrm{C}$ (non-freezing)
	Storage	$-20^{\circ} \mathrm{C}$ to $65{ }^{\circ} \mathrm{C}$ (non-freezing)
Ambient humidity	Operation	
	Storage	90 \%RH or
Ambience		Indoors (no direct sunlight), free from corrosive gas, flammable gas, oil mist, dust, and dirt
Altitude		2000 m or less above sea level (Contact your local sales office for the altitude for options.)
Vibration resistance		$5.9 \mathrm{~m} / \mathrm{s}^{2}$, at 10 Hz to 55 Hz (directions of X, Y and Z axes)

When the product has been stored for an extended period of time, contact your local sales office.
-When handling the servo amplifier, be careful about the edged parts such as corners of the servo amplifier.

- The servo amplifier must be installed in a metal cabinet.

. CAUTION

When fumigants that contain halogen materials such as fluorine, chlorine, bromine, and iodine are used for disinfecting and protecting wooden packaging from insects, they cause malfunction when entering our products. Please take necessary precautions to ensure that remaining materials from fumigant do not enter our products, or treat packaging with methods other than fumigation (heat method). Additionally, disinfect and protect wood from insects before packing products.

(2) Wiring

\triangle CAUTION

Wire the equipment correctly and securely. Otherwise, the servo motor may operate unexpectedly.

- Do not install a power capacitor, surge killer, or radio noise filter (optional FR-BIF-(H)) on the servo amplifier output side.
- To avoid a malfunction, connect the wires to the correct phase terminals (U, V, and W) of the servo amplifier and servo motor.
-Connect the servo amplifier power output (U, V, and W) to the servo motor power input (U, V, and W) directly. Do not let a magnetic contactor, etc. intervene. Otherwise, it may cause a malfunction.

-The connection diagrams in this instruction manual are shown for sink interfaces, unless stated otherwise.
- The surge absorbing diode installed to the DC relay for control output should be fitted in the specified direction. Otherwise, the emergency stop and other protective circuits may not operate.

- When the cable is not tightened enough to the terminal block, the cable or terminal block may generate heat because of the poor contact. Be sure to tighten the cable with specified torque.
- Connecting a servo motor of the wrong axis to $\mathrm{U}, \mathrm{V}, \mathrm{W}$, or CN 2 of the servo amplifier may cause a malfunction.

(3) Test run and adjustment

© CAUTION
 -Before operation, check the parameter settings. Improper settings may cause some machines to operate unexpectedly.
 - Never make a drastic adjustment or change to the parameter values as doing so will make the operation unstable.
 -Do not get close to moving parts during the servo-on status.

(4) Usage

§ CAUTION

When it is assumed that a hazardous condition may occur due to a power failure or product malfunction, use a servo motor with an external brake to prevent the condition.
-Do not disassemble, repair, or modify the equipment.

. CAUTION

Before resetting an alarm, make sure that the run signal of the servo amplifier is off in order to prevent a sudden restart. Otherwise, it may cause an accident.
-Use a noise filter, etc. to minimize the influence of electromagnetic interference. Electromagnetic interference may be given to the electronic equipment used near the servo amplifier.

- Burning or breaking a servo amplifier may cause a toxic gas. Do not burn or break it.
-Use the servo amplifier with the specified servo motor.
- The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used for ordinary braking.
- For such reasons as service life and mechanical structure (e.g. where a ball screw and the servo motor are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety, install a stopper on the machine side.

(5) Corrective actions

. CAUTION

When it is assumed that a hazardous condition may occur due to a power failure or product malfunction, use a servo motor with an electromagnetic brake or external brake to prevent the condition.

- Configure an electromagnetic brake circuit so that it is activated also by an external emergency stop switch.

. CAUTION

When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before restarting operation.
-Provide an adequate protection to prevent unexpected restart after an instantaneous power failure.

(6) Maintenance, inspection and parts replacement

\triangle CAUTION

With age, the electrolytic capacitor of the servo amplifier will deteriorate. To prevent a secondary accident due to a malfunction, it is recommended that the electrolytic capacitor be replaced every 10 years when it is used in general environment. Please contact your local sales office.
Ohen using the servo amplifier that has not been energized for an extended period of time, contact your local sales office.

(7) General instruction

To illustrate details, the equipment in the diagrams of this Instruction Manual may have been drawn without covers and safety guards. When the equipment is operated, the covers and safety guards must be installed as specified. Operation must be performed in accordance with this Instruction Manual.

- DISPOSAL OF WASTE •

Please dispose a servo amplifier, battery (primary battery) and other options according to your local laws and regulations.

\. EEP-ROM life

The number of write times to the EEP-ROM, which stores parameter settings, etc., is limited to 100,000 . If the total number of the following operations exceeds 100,000 , the servo amplifier may malfunction when the EEP-ROM reaches the end of its useful life.

- Write to the EEP-ROM due to parameter setting changes
- Write to the EEP-ROM due to device changes
- Write to the EEP-ROM due to point table changes
- Write to the EEP-ROM due to program changes

STO function of the servo amplifier

When using the STO function of the servo amplifier, refer to chapter 13 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
For the MR-J3-D05 safety logic unit, refer to appendix 5 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

Compliance with global standards

For the compliance with global standards, refer to appendix 4 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
«About the manual»
You must have this Instruction Manual and the following manuals to use this servo. Ensure to prepare them to use the servo safely.

Relevant manuals

Manual name	Manual No.
MELSERVO MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual	SH(NA)030107
MELSERVO MR-J4-_A_-RJ Servo Amplifier Instruction Manual (Modbus-RTU Protocol) (Note $5)$	SH(NA)030175
MELSERVO MR-J4-DU_(-RJ)/MR-CR55K_ Instruction Manual (Note 6)	SH(NA)030153
MELSERVO-J4 MR-J4 Servo Amplifier Instruction Manual (Troubleshooting)	SH(NA)030109
MELSERVO Servo Motor Instruction Manual (Vol. 3) (Note 1)	SH(NA)030113
MELSERVO Linear Servo Motor Instruction Manual (Note 2)	SH(NA)030110
MELSERVO Direct Drive Motor Instruction Manual (Note 3)	SH(NA)030112
MELSERVO Linear Encoder Instruction Manual (Note 2, 4)	SH(NA)030111
EMC Installation Guidelines	IB(NA)67310
Parameter Unit MR-PRU03 Instruction Manual (MR-J4)	SH(NA)030186

Note 1. It is necessary for using a rotary servo motor.
2. It is necessary for using a linear servo motor.
3. It is necessary for using a direct drive motor.
4. It is necessary for using a fully closed loop system.
5. It is necessary for using the Modbus-RTU communication function.
6. It is necessary for using the MR-J4-DU_A_(-RJ) drive unit or MR-CR55K_ converter unit.

This Instruction Manual does not describe the following items. The followings are the same as MR-J4-_A_-RJ Servo amplifiers. For details of the items, refer to each chapter/section of the detailed explanation field. "MR-J4-_A_" means "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

Item	Detailed explanation
Installation	MR-J4-_A_chapter 2
Normal gain adjustment	MR-J4-_A_chapter 6
Special adjustment functions	MR-J4-_A_chapter 7
Dimensions	MR-J4-_A_chapter 9
Characteristics	MR-J4-_A_chapter 10
ABSOLUTE POSITION DETECTION SYSTEM (only 12.1 Summary and 12.2 Battery)	MR-J4-_A_chapter 12
USING STO FUNCTION	MR-J4-_A_chapter 13
USING A LINEAR SERVO MOTOR	MR-J4-_A_chapter 15
USING A DIRECT DRIVE MOTOR	MR-J4-_A_chapter 16
FULLY CLOSED LOOP SYSTEM	MR-J4-_A_chapter 17
MR-J4-03A6-RJ SERVO AMPLIFIER	MR-J4-_A_chapter 18

«Wiring»
Wires mentioned in this Instruction Manual are selected based on the ambient temperature of $40{ }^{\circ} \mathrm{C}$.

«U.S. customary units»

U.S. customary units are not shown in this manual. Convert the values if necessary according to the following table.

Quantity	SI (metric) unit	U.S. customary unit
Mass	$1[\mathrm{~kg}]$	$2.2046[\mathrm{lb}]$
Length	$1[\mathrm{~mm}]$	$0.03937[\mathrm{inch}]$
Torque	$1[\mathrm{~N} \cdot \mathrm{~m}]$	$141.6[\mathrm{oz} \cdot \mathrm{inch}]$
Moment of inertia	$1\left[\left(\times 10^{-4} \mathrm{~kg}^{\circ} \cdot \mathrm{m}^{2}\right)\right]$	$5.4675\left[\mathrm{oz} \cdot \mathrm{inch}^{2}\right]$
Load (thrust load/axial load)	$1[\mathrm{~N}]$	$0.2248[\mathrm{lbf}]$
Temperature	$\mathrm{N}\left[{ }^{\circ} \mathrm{C}\right] \times 9 / 5+32$	$\mathrm{~N}\left[{ }^{\circ} \mathrm{F}\right]$

CONTENTS

1.1 For proper use of the positioning mode... 1-1
1.2 Positioning mode specification list... 1-2
1.3 Function list... 1- 5
1.4 Configuration including peripheral equipment.. 1-9
2. SIGNALS AND WIRING 2-1 to 2-46
2.1 I/O signal connection example... 2- 3
2.1.1 MR-J4-_A_-RJ 100 W or more ... 2- 3
2.1.2 MR-J4-03A6-RJ .. 2-9
2.2 Connectors and pin assignment... 2-15
2.3 Signal (device) explanations... 2-22
2.4 Analog override.. 2-38
2.5 Internal connection diagram .. 2-40
2.6 Power-on sequence... 2-45
2.6.1 MR-J4-_A_-RJ 100 W or more .. 2-45
2.6.2 MR-J4-03A6-RJ ... 2-46
3. DISPLAY AND OPERATION SECTIONS 3-1 to 3-54
\qquad
3.1 MR-J4-_A_-RJ 100 W or more

3-1
3.1.1 Display sequence.. 3-1
3.1.2 Status display ... 3- 3
3.1.3 Diagnostic mode .. 3-12
3.1.4 Alarm mode ... 3-15
3.1.5 Point table setting... 3-17
3.1.6 Parameter mode ... 3-21
3.1.7 External I/O signal display... 3-23
3.1.8 Output signal (DO) forced output ... 3-24
3.1.9 Single-Step feed... 3-25
3.1.10 Teaching function... 3-27
3.2 MR-J4-03A6-RJ ... 3-28
3.2.1 Display flowchart .. 3-28
3.2.2 Status display mode.. 3-29
3.2.3 Diagnostic mode .. 3-34
3.2.4 Alarm mode ... 3-38
3.2.5 Point table setting... 3-40
3.2.6 Parameter mode .. 3-44
3.2.7 External I/O signal display.. 3-49
3.2.8 Output signal (DO) forced output ... 3-50
3.2.9 Step feed .. 3-51
3.2.10 Teaching function.. 3-53
4.1 Startup 4-2
4.1.1 Power on and off procedures 4-2
4.1.2 Stop 4-2
4.1.3 Test operation 4-3
4.1.4 Parameter setting 4-4
4.1.5 Point table setting 4-5
4.1.6 Actual operation 4-5
4.1.7 Troubleshooting at start-up 4-5
4.2 Automatic operation mode 4-7
4.2.1 Automatic operation mode 4-7
4.2.2 Automatic operation using point table 4-12
4.3 Manual operation mode 4-42
4.3.1 JOG operation 4-42
4.3.2 Manual pulse generator operation 4-44
4.4 Home position return mode 4-46
4.4.1 Outline of home position return 4-46
4.4.2 Dog type home position return 4-49
4.4.3 Count type home position return 4-51
4.4.4 Data set type home position return 4-53
4.4.5 Stopper type home position return 4-54
4.4.6 Home position ignorance (servo-on position as home position) 4-56
4.4.7 Dog type rear end reference home position return 4-57
4.4.8 Count type front end reference home position return 4-59
4.4.9 Dog cradle type home position return 4-60
4.4.10 Dog type last Z-phase reference home position return 4-62
4.4.11 Dog type front end reference home position return type 4-64
4.4.12 Dogless Z-phase reference home position return type. 4-66
4.4.13 Automatic retract function used for the home position return 4-67
4.4.14 Automatic positioning to home position function 4-68
4.5 Roll feed mode using the roll feed display function 4-69
4.6 Point table setting method 4-71
4.6.1 Setting procedure 4-71
4.6.2 Detailed setting window 4-73
5.1 Startup 5-1
5.1.1 Power on and off procedures 5-1
5.1.2 Stop 5-2
5.1.3 Test operation 5-3
5.1.4 Parameter setting 5-4
5.1.5 Actual operation 5-5
5.1.6 Troubleshooting at start-up 5-5
5.2 Program operation method 5-6
5.2.1 Program operation method 5-6
5.2.2 Program language. 5-7
5.2.3 Basic settings of signals and parameters 5-30
5.2.4 Timing chart of the program operation. 5-32
5.3 Manual operation mode 5-34
5.3.1 JOG operation 5-34
5.3.2 Manual pulse generator operation 5-35
5.4 Home position return mode 5-37
5.4.1 Summary of home position return 5-37
5.4.2 Dog type home position return 5-40
5.4.3 Count type home position return 5-42
5.4.4 Data set type home position return 5-44
5.4.5 Stopper type home position return 5-45
5.4.6 Home position ignorance (servo-on position as home position). 5-46
5.4.7 Dog type rear end reference home position return 5-47
5.4.8 Count type front end reference home position return 5-49
5.4.9 Dog cradle type home position return 5-51
5.4.10 Dog type last Z-phase reference home position return 5-53
5.4.11 Dog type front end reference home position return type 5-55
5.4.12 Dogless Z-phase reference home position return type. 5-57
5.4.13 Automatic retract function used for the home position return. 5-58
5.5 Serial communication operation 5-59
5.5.1 Positioning operation using the program 5-59
5.5.2 Multi-drop method (RS-422 communication) 5-60
5.5.3 Group specification 5-61
5.6 Incremental value command method 5-63
5.7 Roll feed mode using the roll feed display function 5-64
5.8 Program setting method 5-65
5.8.1 Setting procedure 5-65
5.8.2 Window for program edit 5-66
5.8.3 Indirect addressing window. 5-67
6. HOW TO USE INDEXER6-1 to 6-30
6.1 Startup 6-1
6.1.1 Power on and off procedures 6-1
6.1.2 Stop 6-2
6.1.3 Test operation 6-3
6.1.4 Parameter setting 6-4
6.1.5 Actual operation 6-5
6.1.6 Troubleshooting at start-up 6-5
6.2 Automatic operation mode 6-7
6.2.1 Automatic operation mode 6-7
6.2.2 Automatic operation mode 1 (rotation direction specifying indexer). 6-8
6.2.3 Automatic operation mode 2 (shortest rotating indexer). 6-12
6.3 Manual operation mode 6-15
6.3.1 Station JOG operation. 6-15
6.3.2 JOG operation 6-18
6.4 Home position return mode 6-20
6.4.1 Outline of home position return 6-20
6.4.2 Torque limit changing dog type home position return 6-22
6.4.3 Torque limit changing data set type 6-24
6.4.4 Backlash compensation and digital override 6-26
6.4.5 Safety precautions 6-29
7.1 Parameter list 7-2
7.1.1 Basic setting parameters ([Pr. PA _]). 7-3
7.1.2 Gain/filter setting parameters ([Pr. PB_-]) 7-4
7.1.3 Extension setting parameters ([Pr. PC__]) 7-6
7.1.4 I/O setting parameters ([Pr. PD__]) 7-9
7.1.5 Extension setting 2 parameters ([Pr. PE__]) 7-10
7.1.6 Extension setting 3 parameters ([Pr. PF_-]) 7-12
7.1.7 Linear servo motor/DD motor setting parameters ([Pr. $\left.\mathrm{PL}_{-}\right]$) 7-13
7.1.8 Option setting parameters ([Pr. Po__]) 7-14
7.1.9 Positioning control parameters ([Pr. PT $\left.{ }_{-}\right]$) 7-15
7.2 Detailed list of parameters 7-16
7.2.1 Basic setting parameters ([Pr. PA__]) 7-17
7.2.2 Gain/filter setting parameters ([Pr. PB__]) 7-30
7.2.3 Extension setting parameters ([Pr. PC__]) 7-42
7.2.4 I/O setting parameters ([Pr. PD__]) 7-56
7.2.5 Extension setting 2 parameters ([Pr. PE_-]). 7-68
7.2.6 Extension setting 3 parameters ([Pr. $\left.\mathrm{PF}_{--}\right]$) 7-71
7.2.7 Linear servo motor/DD motor setting parameters ([Pr. PL_{-}_]) 7-73
7.2.8 Option setting parameters ([Pr. Po__]) 7-75
7.2.9 Positioning control parameters ([Pr. PT__]) 7-83
7.3 How to set the electronic gear 7-92
7.3.1 Electronic gear settings in the point table method and program method 7-92
7.3.2 Electronic gear setting in the indexer method 7-94
7.4 Software limit 7-95
7.5 Stop method for LSP (Forward rotation stroke end) off or LSN (Reverse rotation stroke end) off 7-96
7.6 Stop method at software limit detection 7-97
8. TROUBLESHOOTING8-1 to 8-8
8.1 Explanation for the lists 8-1
8.2 Alarm list 8-2
8.3 Warning list 8-7
9. OPTIONS AND PERIPHERAL EQUIPMENT9-1 to 9-4
9.1 MR-HDP01 manual pulse generator 9- 2
10. COMMUNICATION FUNCTION (MITSUBISHI GENERAL-PURPOSE AC SERVO PROTOCOL) 10-1 to 10-40
10.1 Command and data No. list 10-1
10.1.1 Reading command 10-2
10.1.2 Writing commands 10-12
10.2 Detailed explanations of commands 10-16
10.2.1 External I/O signal status (DIO diagnosis) 10-16
10.2.2 Input device on/off 10-21
10.2.3 Input device on/off (for test operation) 10-22
10.2.4 Test operation mode 10-23
10.2.5 Output signal pin on/off (output signal (DO) forced output) 10-25
10.2.6 Point table 10-26
10.3 Settings equivalent to previous models 10-34
10.3.1 Relevant matters to monitor information 10-34
10.3.2 Relevant matters to input/output 10-36
11.1 Function block diagram 11-2
11.2 Structure 11-4
11.2.1 Parts identification 11-4
11.2.2 Installation and removal of the MR-D01 extension I/O unit 11-5
11.3 Configuration including peripheral equipment 11-9
11.4 Installation direction and clearances 11-11
11.5 Signals and wiring 11-13
11.5.1 I/O signal connection diagram 11-14
11.5.2 Connectors and pin assignment 11-41
11.5.3 Signal (device) explanations 11-43
11.5.4 Interfaces 11-57
11.6 Monitor display with MR Configurator2 11-61
11.7 Operation 11-63
11.7.1 Operation mode and selecting method 11-63
11.7.2 When using MR-DS60 (6-digit digital switch) for automatic operation with BCD (3-digit $\times 2$) inputs 11-63
11.7.3 When using a programmable controller for automatic operation with BCD (3 digits $\times 2$) inputs 11-67
11.7.4 Home position return in the BCD (3 digits $\times 2$) input operation 11-70
11.8 Dimensions 11-71
11.8.1 MR-D01 extension I/O unit 11-71
11.8.2 When an MR-D01 extension IO unit is connected to a servo amplifier 11-71
11.9 Options and peripheral equipment 11-72
11.9.1 Combinations of cable/connector sets 11-72
11.9.2 MR-DS60 (6-digit digital switch) 11-73
11.9.3 PS7DW-20V14B-F (Junction terminal block) (recommended) 11-76
11.9.4 MR-TB50 (Junction terminal block). 11-78
12. APPLICATION OF FUNCTIONS12-1 to 12-22
12.1 Simple cam function 12-1
12.1.1 Outline of simple cam function 12-1
12.1.2 Simple cam function block 12- 2
12.1.3 Control of simple cam function 12-3
12.1.4 Simple cam specification list 12-4
12.1.5 Operation in combination with the simple cam 12-5
12.1.6 Setting list 12-8
12.1.7 Data to be used with simple cam function 12-9
12.1.8 Function block diagram for displaying state of simple cam control 12-12
12.1.9 Operation 12-12
12.2 Mark detection 12-13
12.2.1 Current position latch function 12-13
12.2.2 Interrupt positioning function 12-19
12.3 Infinite feed function (setting degree) 12-22

MEMO

1. FUNCTIONS AND CONFIGURATION

1. FUNCTIONS AND CONFIGURATION

The following items are the same as MR-J4-_A_-RJ servo amplifiers. For the details of the items, refer to each chapter/section (in "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual") indicated in the detailed explanation field.

Item	Detailed explanation	
	MR-J4-_A_-RJ 100 W or more	MR-J4-03A6-RJ
Combinations of servo amplifiers and servo motors	Section 1.4	Section 18.1.4
Model code definition	Section 1.6	Section 18.1.6
Structure (parts identification)	Section 1.7	Section 18.1.7

1.1 For proper use of the positioning mode
(1) Servo amplifier/MR Configurator2

The positioning mode is used by the servo amplifier and MR Configurator2 with the following software versions.

Product name	Model	Software version
Servo amplifier	MR-J4-_A_-RJ 100 W or more	B3 or later
	MR-J4-03A6-RJ	Does not depend on the software version.
MR Configurator2	SW1DNC-MRC2-_	1.34 L or later

(2) Parameter setting
(a) Selection of the positioning mode

Select a positioning mode with [Pr. PA01 Operation mode] to use.

(b) Positioning control parameters ([Pr. PT_{-}]])

To enable read/write the positioning control parameters ([Pr. PT__]), set [Pr. PA19 Parameter writing inhibit] to "0 0 A B".
(c) Assigning recommended input/output devices

Assign recommended input/output devices to the pins of CN1 in accordance with each chapter of point table/program/indexer method.

1. FUNCTIONS AND CONFIGURATION

1.2 Positioning mode specification list

The specifications only of the positioning mode are listed here. For other specifications, refer to section 1.3 and 18.1.3 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

Item						Description
Servo amplifier model						MR-J4-_A_-RJ 100 W or more/MR-J4-03A6-RJ
			Operational specifications			Positioning with specification of point table No. (255 points) (Note 6, 7)
			Position command input (Note 1)	Absol value comm meth		Set in the point table. Setting range of feed length per point: -999999 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$, -99.9999 to 99.9999 [$\times 10^{\text {STM }}$ inch], -999999 to 999999 [pulse], Setting range of rotation angle: -360.000 to 360.000 [degree]
				Incre value comm meth	mental and d	Set in the point table. Setting range of feed length per point: 0 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$, 0 to $99.9999\left[\times 10^{\text {STM }}\right.$ inch], 0 to $999999[p u l s e]$, Setting range of rotation angle: 0 to 999.999 [degree]
			Speed command input			Set the acceleration/deceleration time constants in the point table. Set the S-pattern acceleration/deceleration time constants with [Pr. PC03].
			System			Signed absolute value command method/incremental value command method
			Analog override			0 V DC to $\pm 10 \mathrm{~V} \mathrm{DC} / 0 \%$ to 200%
			Torque limit			Set with parameter or external analog input (0 V DC to +10 V DC/maximum torque)
			$B C D$ input			Signed 6-digit BCD digital switch or contact input Setting range of feed length: -999999 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$, -99.9999 to $99.9999\left[\times 10^{\text {STM }}\right.$ inch], -999999 to 999999 [pulse], Setting range of rotation angle: -360.000 to 360.000 [degree]
						Signed 6-digit BCD digital switch or contact input Setting range of feed length: 0 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$, 0 to $99.9999\left[\times 10^{\text {STM }}\right.$ inch], 0 to 999999 [pulse], Setting range of rotation angle: 0 to 999.999 [degree]
				Speed command input		Selects the rotation speeds and acceleration/deceleration times of the point table No. 1 to 15 by a contact input. Set the S-pattern acceleration/deceleration time constants with [Pr. PC03].
				System		Signed absolute value command method/incremental value command method
						Setting of position command data with RS-422/RS-485 communication Setting range of feed length per point: -999999 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$, -99.9999 to $99.9999\left[\times 10^{\text {STM }}\right.$ inch], -999999 to 999999 [pulse], Setting range of rotation angle: -360.000 to 360.000 [degree]
						Setting of position command data with RS-422/RS-485 communication Setting range of feed length per point: 0 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$, 0 to $99.9999\left[\times 10^{\text {STM }}\right.$ inch], 0 to 999999 [pulse], Setting range of rotation angle: 0 to 999.999 [degree]
				Speed command input		Selects the rotation speed and acceleration/deceleration time constant through RS-422/RS-485 communication. Set the S-pattern acceleration/deceleration time constants with [Pr. PC03].
				System		Signed absolute value command method/incremental value command method
			Operational specifications			Program language (program with MR Configurator2) Program capacity: 640 steps (256 programs)
			Position command input (Note 1)	Absolute value command method		Set with program language. Setting range of feed length: -999999 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$, -99.9999 to $99.9999\left[\times 10^{\text {STM }}\right.$ inch], -999999 to 999999 [pulse], Setting range of rotation angle: -360.000 to 360.000 [degree]
				Incremental value command method		Set with program language. Setting range of feed length: -999999 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$, -99.9999 to $99.9999\left[\times 10^{\text {STM }}\right.$ inch], -999999 to 999999 [pulse], Setting range of rotation angle: -999.999 to 999.999 [degree]
			Speed command input			Set servo motor speed, acceleration/deceleration time constants, and S-pattern acceleration/deceleration time constants with program language. S-pattern acceleration/deceleration time constants are also settable with [Pr. PC03].
			System			Signed absolute value command method/signed incremental value command method
			Analog override			Set with external analog input (0 V DC to $\pm 10 \mathrm{~V}$ DC/0\% to 200%)
			Torque limit			Set with parameter or external analog input (0 V DC to +10 V DC/maximum torque)

1. FUNCTIONS AND CONFIGURATION

Item				Description
		Operational specifications		Positioning by specifying the station position (Note 7) The maximum number of divisions: 255
		Speed command input		Selects the rotation speed and acceleration/deceleration time constant by a contact input.
		System		Rotation direction specifying indexer/shortest rotating indexer
		Digital override		Selects the override multiplying factor by a contact input.
		Torque limit		Set with parameter or external analog input (0 V DC to +10 V DC/maximum torque)
		Point table	Each positioning operation	Point table No. input method/position data input method Operates each positioning based on position command and speed command.
			Automatic continuous positioning operation	Varying-speed operation (2 to 255 speeds)/automatic continuous positioning operation (2 to 255 points)/ Automatic continuous operation to a point table selected at startup/ automatic continuous operation to the point table No. 1
		Program		Depends on settings of program language.
		Indexer	Rotation direction specifying indexer	Positions to the specified station. Rotation direction settable
			Shortest rotating indexer	Positions to the specified station. Rotates in the shorter direction from the current position.
		Point table/ program	JOG operation	Executes a contact input or an inching operation with the RS-422/RS-485 communication function based on speed command set with parameters.
			Manual pulse generator operation	Manual feeding is executed with a manual pulse generator. Command pulse multiplication: select from $\times 1, \times 10$, and $\times 100$ with a parameter.
		Indexer	JOG operation	Decelerates to a stop regardless of the station.
		Dog type		Returns to home position upon Z-phase pulse after passing through the proximity dog. home position address settable/home position shift amount settablelhome position return direction selectable/ automatic retract on dog back to home position/automatic stroke retract function
		Count type		Returns to home position upon the encoder pulse count after touching the proximity dog. Home position return direction selectable/home position shift amount settable/home position address settable/ automatic retract on dog back to home position/automatic stroke retract function
		Data set type		Returns to home position without dog. Sets any position as a home position using manual operation, etc./home position address settable
		Stopper type		Returns to home position upon hitting the stroke end. Home position return direction selectable/home position address settable
		Home position ignorance (servo-on position as home position)		Sets a home position where SON (Servo-on) signal turns on. Home position address settable
		Dog type rear end reference		Returns to home position based on the rear end of the proximity dog. Home position return direction selectable/home position shift amount settable/home position address settable/ automatic retract on dog back to home position/automatic stroke retract function
		Count type front end reference		Returns to home position based on the front end of the proximity dog. Home position return direction selectable/home position shift amount settable/home position address settable/ automatic retract on dog back to home position/automatic stroke retract function
		Dog cradle type		Returns to home position upon the first Z-phase pulse based on the front end of the proximity dog. Home position return direction selectable/home position shift amount settable/home position address settable/ automatic retract on dog back to home position/automatic stroke retract function
		Dog type last Z-phase reference (Note 4)		Returns to home position upon the Z-phase pulse right before the proximity dog based on the front end of the proximity dog. Home position return direction selectable/home position shift amount settable/home position address settable/ automatic retract on dog back to home position/automatic stroke retract function
		Dog type front end reference		Returns to home position to the front end of the dog based on the front end of the proximity dog. Home position return direction selectable/home position shift amount settable/home position address settable/ automatic retract on dog back to home position/automatic stroke retract function
		Dogless Z-phase reference (Note 4)		Returns to home position to the Z-phase pulse with respect to the first Z-phase pulse. Home position return direction selectable/home position shift amount settable/home position address settable
		Torque limit changing dog type		Returns to home position upon Z-phase pulse after passing through the front end of the proximity dog. Home position return direction selectable/home position shift amount settable/home position address settable Torque limit automatic changing function
		Torque limit changing data set type		Returns to home position without dog. Sets any position as home position/home position address settable/torque limit automatic changing function
	Automatic positioning to home position function (Note 2)			High-speed automatic positioning to a defined home position
Other functions				Absolute position detection/backlash compensation/overtravel prevention with external limit switch (LSP/LSN)/software stroke limit/mark detection function (Note 3)/override

1. FUNCTIONS AND CONFIGURATION

Note 1. STM is the ratio to the setting value of the position data. STM can be changed with [Pr. PT03 Feeding function selection]
2. The automatic positioning to home position function is not available with the program method and the indexer method.
3. Indexer method does not have the mark detection function.
4. Dog type last Z-phase reference home position return and dogless Z-phase reference home position return type are not compatible with direct drive motors and incremental linear encoders.
5. For MR-J4-_A_-RJ servo amplifiers with a capacity of 100 W or more, the RS-485 communication is available with the servo amplifiers manufactured in November, 2014 or later.
6. For MR-J4-03A6-RJ servo amplifiers, point table No. 1 to No. 99 can be set with the operation section (4 push buttons). Use MR Configurator2 to set point table No. 100 to 255. (Refer to section 3.2.5.)
7. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 (Point table No. output 1) to PT7 (Point table No. output 8) or PS0 (Station output 1) to PS7 (Station output 8) cannot be outputted simultaneously.

1.3 Function list

```
POINT
The symbols in the control mode column mean as follows.
CP: Positioning mode (point table method)
CL: Positioning mode (program method)
PS: Positioning mode (indexer method)
```

The following table lists the functions of this servo. For details of the functions, refer to each section indicated in the detailed explanation field. "MR-J4-_A_" means "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

Function		Description	Control mode			Detailed explanation	
		合	Ј	の			
Model adaptive control			This function achieves a high response and stable control following the ideal model. The two-degrees-of-freedom model adaptive control enables you to set a response to the command and response to the disturbance separately. Additionally, this function can be disabled. To disable this function, refer to section 7.5 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". This is available with servo amplifiers with software version B4 or later. Check the software version using MR Configurator2.	\bigcirc	\bigcirc	\bigcirc	
Positioning mode (point table method)		Set 1 to 255 point tables in advance, and select any point table to perform operation in accordance with the set values. To select point tables, use external input signals or communication function.	\bigcirc			Chapter 4	
Positioning mode (program method)		Set 1 to 256 programs in advance and select any program to perform operation in accordance with the programs. To select programs, use external input signals or communication function.		\bigcirc		Chapter 5	
Positioning mode (indexer method)		Set 2 to 255 divided stations in advance to perform operation to the station positions. To select station positions, use external input signals or communication function.	\rangle		\bigcirc	Chapter 6	
Roll feed display function		Positions based on specified travel distance from a status display "0" of current/command positions at start.	\bigcirc	\bigcirc		Section 4.5	
Mark detection	Current position latch function	When the mark detection signal turns on, the current position is latched. The latched data can be read with communication commands.	\bigcirc	\bigcirc		Section 12.2.1	
	Interrupt positioning function	When MSD (Mark detection) turns on, this function converts the remaining distance to the travel amount set in [Pr. PT30] and [Pr. PT31] (Mark sensor stop travel distance). This is available with servo amplifiers with software version B7 or later.	\bigcirc	\bigcirc		$\begin{aligned} & \text { Section } \\ & 12.2 .2 \end{aligned}$	
Infinite feed function (setting degree)		When the unit of position data of the automatic operation or manual operation is set to degree, the detection of [AL. E3.1 Multi-revolution counter travel distance excess warning] is disabled and the home position is retained even if the servo motor rotates 32768 revolutions or more are in the same direction. Thus, the current position is restored after the power is cycled. This function can be used with the absolute position detection system. This is available with servo amplifiers with software version B7 or later.	\bigcirc	\bigcirc	\rangle	Section 12.3	
Simple cam function		This function enables synchronous control by using software instead of controlling mechanically with cam. Synchronous operation and synchronous interpolation operation between two axes can be performed using the encoder following function, the mark sensor input compensation function, and the positioning data. This function is not available with the servo amplifier to which the MR-D30 unit has been connected. This is available with servo amplifiers with software version B7 or later. This function will be available with MR-J4-03A6-RJ servo amplifiers in the future.	O	\bigcirc	¢	Section 12.1	

Function	Description	Control mode			Detailed explanation
		O	Ј	0	
home position return	Dog type/count type/data setting type/stopper type/home position ignorance/dog type rear end reference/count type front end reference/dog cradle type/dog type last Z-phase reference/dog type Z-phase reference/dogless Z-phase reference	\bigcirc	O	\checkmark	Section 4.4 Section 5.4
	Torque limit changing dog type/torque limit changing data set type	\bigcirc	>	0	Section 6.4
High-resolution encoder	Rotary servo motors compatible with MELSERVO-J4 series are equipped with high-resolution encoders of 4194304 pulses/rev. However, the encoder resolution of the rotary servo motor compatible with MR-J4-03A6-RJ servo amplifiers will be 262144 pulses/rev.	O	O	O	
Absolute position detection system	Setting a home position once makes home position return unnecessary at every power-on. Only 12.1 Summary and 12.2 Battery will be appropriate references for the positioning mode.	0	O	O	$\begin{array}{\|l} \text { MR-J4-_A_A } \\ \text { chapter } 12 \end{array}$
Gain switching function	You can switch gains during rotation/stop, and can use input devices to switch gains during operation.	\bigcirc	O	O	MR-J4- A section 7.2
Advanced vibration suppression control II	This function suppresses vibration at the arm end or residual vibration.	0	O	O	$\begin{array}{\|l\|} \hline \text { MR-J4-_A } \\ \text { section 7.1.5 } \end{array}$
Machine resonance suppression filter	This is a filter function (notch filter) which decreases the gain of the specific frequency to suppress the resonance of the mechanical system.	\bigcirc	O	O	$\begin{aligned} & \hline \text { MR-J4-_A } \\ & \text { section } \overline{7.1 .1} \end{aligned}$
Shaft resonance suppression filter	When a load is mounted to the servo motor shaft, resonance by shaft torsion during driving may generate a mechanical vibration at high frequency. The shaft resonance suppression filter suppresses the vibration.	O	O	O	$\begin{aligned} & \text { MR-J4-- A- } \\ & \text { section 7.1.3 } \end{aligned}$
Adaptive filter II	Servo amplifier detects mechanical resonance and sets filter characteristics automatically to suppress mechanical vibration.	\bigcirc	O	O	MR-J4-_A section $\overline{7.1} .2$
Low-pass filter	Suppresses high-frequency resonance which occurs as servo system response is increased.	\bigcirc	O	O	MR-J4-_A section $\overline{7.1} .4$
Machine analyzer function	Analyzes the frequency characteristic of the mechanical system by simply connecting an MR Configurator2 installed personal computer and servo amplifier. MR Configurator2 is necessary for this function.	0	0	O	
Robust filter	This function provides better disturbance response in case low response level that load to motor inertia ratio is high for such as roll send axes.	0	O	O	[Pr. PE41]
Slight vibration suppression control	Suppresses vibration of ± 1 pulse generated at a servo motor stop.	0	\bigcirc	O	[Pr. PB24]
Electronic gear	Position commands can be multiplied by $1 / 864$ to 33935.	0	0	>	[Pr. PA06]
	Position commands can be multiplied by 1/9999 to 9999.			\bigcirc	[Pr. PA07]
Auto tuning	Automatically adjusts the gain to optimum value if load applied to the servo motor shaft varies.	\bigcirc	O	O	$\begin{array}{\|l} \hline \text { MR-J4--A } \\ \text { section } 6 . \overline{3} \end{array}$
Brake unit	Used when the regenerative option cannot provide enough regenerative power. Can be used for the 5 kW or more servo amplifier. This is not available with MR-J4-03A6-RJ servo amplifiers.	\bigcirc	O	O	MR-J4-_A_ section 11.3
Power regeneration converter	Used when the regenerative option cannot provide enough regenerative power. Can be used for the 5 kW or more servo amplifier. This is not available with MR-J4-03A6-RJ servo amplifiers.	0	0	O	MR-J4-_A_ section 11.4
Regenerative option	Used when the built-in regenerative resistor of the servo amplifier does not have sufficient regenerative capability for the regenerative power generated. This is not available with MR-J4-03A6-RJ servo amplifiers.	0	O	O	MR-J4-_A section 11.2
Alarm history clear	Alarm history is cleared.	0	0	0	[Pr. PC18]
Input signal selection (device settings)	ST1 (Forward rotation start), ST2 (Reverse rotation start), and SON (Servoon) and other input device can be assigned to any pins.	0	O	O	[Pr. PD04] [Pr. PD06] [Pr. PD08] [Pr. PD10] [Pr. PD12] [Pr. PD14] [Pr. PD18] [Pr. PD20] [Pr. PD22] [Pr. PD44] [Pr. PD46]

Function	Description	Control mode			Detailed explanation
		O	ठ	の	
Output signal selection (device settings)	The output devices including MBR (Electromagnetic brake interlock) can be assigned to certain pins of the CN1 connector. However, [Pr. PD47] is not available with MR-J4-03A6-RJ servo amplifiers.	O	O	O	$\begin{array}{\|l} \hline \text { [Pr. PD23] to } \\ \text { [Pr. PD26] } \\ \text { [Pr. PD28] } \\ \text { [Pr. PD47] } \\ \hline \end{array}$
Output signal (DO) forced output	Output signal can be forced on/off independently of the servo status. Use this function for checking output signal wiring, etc.	O	O	O	$\begin{array}{\|l\|} \hline \text { MR-J4-_A } \\ \text { section 4.5.8 } \\ \text { section } \\ \text { 18.5.9 } \\ \hline \end{array}$
Command pulse selection	Supports only A-axis/B-axis pulse trains.	0	0	\bigcirc	[Pr. PA13]
Torque limit	Servo motor torque can be limited to any value.	O	O	O	$\begin{aligned} & \hline \text { [Pr. PA11] } \\ & \text { [Pr. PA12] } \end{aligned}$
Status display	Servo status is shown on the 5 -digit, 7 -segment LED display. For MR-J4-03A6-RJ servo amplifiers, the servo status is shown on the 3digit, 7 -segment LED display.	O	O	\bigcirc	$\begin{array}{\|l} \hline \text { Section } \\ \text { 3.1.2 } \\ \text { Section } \\ \text { 3.2.2 } \end{array}$
External I/O signal display	On/off statuses of external I/O signals are shown on the display.	O	O	O	$\begin{array}{\|l\|} \hline \text { Section } \\ \text { 3.1.7 } \\ \text { Section } \\ \text { 3.2.7 } \\ \hline \end{array}$
Alarm code output	If an alarm has occurred, the corresponding alarm number is outputted in 3bit code.	O	O	\bigcirc	Chapter 8
Test operation mode	Jog operation/positioning operation/motor-less operation/DO forced output/program operation/single-step feed However, MR Configurator2 is necessary for positioning operation, program operation, and single-step feed.	O	O	\bigcirc	Section 3.1.8 Section 3.1.9 Section 3.2.8 Section 3.2.9 MR-J.-A section 4.5 .9 section 18.5 .10
Analog monitor output	Servo status is outputted in terms of voltage in real time.	\bigcirc	O	O	$\begin{aligned} & \hline \text { [Pr. PC14] } \\ & \text { [Pr. PC15] } \end{aligned}$
MR Configurator2	Using a personal computer, you can perform the parameter setting, test operation, monitoring, and others.	O	O	O	$\begin{aligned} & \hline \text { MR-J4-_A- } \\ & \text { section } 11.7 \end{aligned}$
Linear servo system	Linear servo system can be configured using a linear servo motor and linear encoder. This is not available with MR-J4-03A6-RJ servo amplifiers.	O	O	\bigcirc	$\begin{array}{\|l} \text { MR-J4-_A-A } \\ \text { chapter } 15 \end{array}$
Direct drive servo system	The direct drive servo system can be configured to drive a direct drive motor. This is not available with MR-J4-03A6-RJ servo amplifiers.	O	O	O	$\begin{array}{\|l} \text { MR-J4-_A-_- } \\ \text { chapter 16 } \end{array}$
Fully closed loop system	Fully closed loop system can be configured using the load-side encoder. This is not available with MR-J4-03A6-RJ servo amplifiers.	O	O	\bigcirc	MR-J4-_A chapter 17
One-touch tuning	Gain adjustment is performed just by one click on a certain button on MR Configurator2 or operation section.	O	0	O	$\begin{aligned} & \hline \text { MR-J4--A } \\ & \text { section } 6.2 \\ & \text { section } \\ & \text { 18.5.4 } \end{aligned}$
SEMI-F47 function	This function which complies with the SEMI-F47 standard enables to avoid triggering [AL. 10 Undervoltage] using the electrical energy charged in the capacitor in case that an instantaneous power failure occurs during operation. This is not available with MR-J4-03A6-RJ servo amplifiers.	O	O	O	MR-J4-_A section 7.4 [Pr. PA20] [Pr. PE25]
Tough drive function	This function makes the equipment continue operating even under the condition that an alarm occurs. The tough drive function includes two types: the vibration tough drive and the instantaneous power failure tough drive. MR-J4-03A6-RJ servo amplifiers are not compatible with the instantaneous power failure tough drive.	O	O	O	$\begin{array}{\|l} \text { MR-J4-_A } \\ \text { section } 7.3 \end{array}$

Function	Description	Control mode			Detailed explanation
		-	ठ	0	
Drive recorder function	This function continuously monitors the servo status and records the status transition before and after an alarm for a fixed period of time. You can check the recorded data on the drive recorder window on MR Configurator2 by clicking the "Graph" button. However, the drive recorder will not operate on the following conditions. 1. You are using the graph function of MR Configurator2. 2. You are using the machine analyzer function. 3. [Pr. PF21] is set to "-1".	O	O	O	[Pr. PA23]
STO function	This amplifier complies with the STO function as functional safety of IEC/EN 61800-5-2. You can create a safety system for the equipment easily. This is not available with MR-J4-03A6-RJ servo amplifiers.	O	O	O	MR-J4-_A_ chapter 13
Servo amplifier life diagnosis function	You can check the cumulative energization time and the number of on/off times of the inrush relay. This function gives an indication of the replacement time for parts of the servo amplifier including a capacitor and a relay before they malfunction. MR Configurator2 is necessary for this function.	\bigcirc	O	O	
Power monitoring function	This function calculates the power running energy and the regenerative power from the data in the servo amplifier such as speed and current. Power consumption and others are displayed on MR Configurator2.	O	O	O	
Machine diagnosis function	From the data in the servo amplifier, this function estimates the friction and vibrational component of the drive system in the equipment and recognizes an error in the machine parts, including a ball screw and bearing. MR Configurator2 is necessary for this function.	O	0	O	
Limit switch	Limits travel intervals using LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end).	O	O	O	
S-pattern acceleration/deceleration	Enables smooth acceleration and deceleration. Set S-pattern acceleration/deceleration time constants with [Pr. PC03]. Compared with linear acceleration/deceleration, the acceleration/deceleration time will be longer for the S-pattern acceleration/deceleration time constants regardless of command speed.	O	0	\checkmark	[Pr. PC03] section 5.2.2
Software limit	Limits travel intervals by address using parameters. Enables the same function with the limit switch by setting parameters.	\bigcirc	O		section 7.4
Analog override	Limits a servo motor speed with analog inputs. A value can be changed from 0% to 200% for a set speed.	\bigcirc	O		section 2.4
Digital override	A commanded speed multiplied by an override value selected with OVR (Override selection) will be an actual servo motor speed. A value can be changed from 0% to 360% for a set speed.	\checkmark		O	[Pr. PT42] [Pr. PT43] section 6.4.4 (2)
Teaching function	After an operation travels to a target position with a JOG operation or manual pulse generator operation, pushing the SET button of the operation part or turning on TCH (Teach) will import position data.	\bigcirc		\checkmark	$\begin{array}{\|l} \hline \text { Section } \\ 3.1 .10 \\ \text { Section } \\ 3.2 .10 \end{array}$
MR-D01 extension I/O unit	MR-D01 is an extension I/O unit that can extend the input/output signals of MR-J4-_A_-RJ servo amplifiers.	O	O	O	Chapter 12
Modbus-RTU communication function	The Modbus protocol uses dedicated message frames for the serial communication between a master and slaves. The dedicated message frames have functions for reading and writing data, and you can write parameters from servo amplifiers and check the operation status of the servo amplifiers by using this function. When the indexer method is used, there are functional restrictions. This function is supported by MR-J4-_A_-RJ servo amplifiers with a capacity of 100 W or more manufactured in November, 2014 or later. This function will be available with MR-J4-03A6-RJ servo amplifiers in the future.	O	O	O	MR-J4-_A_- RJ Servo Amplifier Instruction Manual (Modbus- RTU Protocol)
High-resolution analog input (VC)	The analog input resolution can be increased to 16 bits. This function is available with servo amplifiers manufactured in November 2014 or later. This is not available with MR-J4-03A6-RJ servo amplifiers.	\bigcirc	0	\checkmark	[Pr. PC60]

1. FUNCTIONS AND CONFIGURATION

1.4 Configuration including peripheral equipment

@ CAUTION
 Connecting a servo motor of the wrong axis to $\mathrm{U}, \mathrm{V}, \mathrm{W}$, or CN 2 of the servo amplifier may cause a malfunction.

POINT
 Equipment other than the servo amplifier and servo motor are optional or recommended products.

(1) MR-J4-_A_-RJ 100 W or more

The following illustration is an example of MR-J4-20A-RJ.

Note 1. The power factor improving AC reactor can also be used. In this case, the power factor improving DC reactor cannot be used. When not using the power factor improving DC reactor, short P3 and P4.
2. A 1-phase 200 V AC to 240 V AC power supply may be used with the servo amplifier of MR-J4-70A-RJ or less. For 1-phase 200 V AC to 240 V AC, connect the power supply to L1 and L3. Leave L2 open. For power supply specifications, refer to section 1.3 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
3. Depending on the main circuit voltage and operation pattern, bus voltage decreases, and that may cause the forced stop deceleration to shift to the dynamic brake deceleration. When dynamic brake deceleration is not required, slow the time to turn off the magnetic contactor.
4. When using MR-J4-_A_-RJ servo amplifiers with a capacity of 100 W or more in the linear servo system or in the fully closed loop system, connect an external encoder to this connector. Refer to Table 1.1 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" and "Linear Encoder Instruction Manual" for the connectible external encoders.

1. FUNCTIONS AND CONFIGURATION

(2) MR-J4-03A6-RJ

Note. For details, refer to section 18.3 .2 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

2. SIGNALS AND WIRING

-Any person who is involved in wiring should be fully competent to do the work.

- Before wiring, turn off the power and wait for 15 minutes or more until the charge lamp turns off. Then, confirm that the voltage between $\mathrm{P}+$ and N - is safe with a voltage tester and others. Otherwise, an electric shock may occur. In addition, when confirming whether the charge lamp is off or not, always confirm it from the front of the servo amplifier.
AWARNING Ground the servo amplifier and servo motor securely.
Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, it may cause an electric shock.
- The cables should not be damaged, stressed, loaded, or pinched. Otherwise, it may cause an electric shock.
To avoid an electric shock, insulate the connections of the power supply terminals.
-Wire the equipment correctly and securely. Otherwise, the servo motor may operate unexpectedly, resulting in injury.
- Connect cables to the correct terminals. Otherwise, a burst, damage, etc. may occur.
- Ensure that polarity (+/-) is correct. Otherwise, a burst, damage, etc. may occur.
- The surge absorbing diode installed to the DC relay for control output should be fitted in the specified direction. Otherwise, the emergency stop and other protective circuits may not operate.

Use a noise filter, etc. to minimize the influence of electromagnetic interference. Electromagnetic interference may be given to the electronic equipment used near the servo amplifier.
Do not install a power capacitor, surge killer or radio noise filter (optional FR-BIF$(\mathrm{H}))$ with the power line of the servo motor.
-When using the regenerative resistor, switch power off with the alarm signal. Otherwise, a transistor fault or the like may overheat the regenerative resistor, causing a fire.
Do not modify the equipment.

- Connect the servo amplifier power output (U, V, and W) to the servo motor power input (U, V, and W) directly. Do not let a magnetic contactor, etc. intervene. Otherwise, it may cause a malfunction.

Connecting a servo motor of the wrong axis to $\mathrm{U}, \mathrm{V}, \mathrm{W}$, or CN 2 of the servo amplifier may cause a malfunction.

2. SIGNALS AND WIRING

The following items are the same as MR-J4-_A_-RJ servo amplifiers. For the details of the items, refer to each chapter/section (in "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual") indicated in the detailed explanation field.

Item	Detailed explanation	
	$\begin{gathered} \text { MR-J4-_A_-RJ } 100 \text { W } \\ \text { or more } \end{gathered}$	MR-J4-03A6-RJ
Input power supply circuit	Section 3.1	Section 18.3.1
Explanation of power supply system (except section 2.6 Power-on sequence)	Section 3.3	Section 18.3.2
Detailed explanation of signals	Section 3.6	
Forced stop deceleration function	Section 3.7	
Alarm occurrence timing chart	Section 3.8	Section 18.3.8
Interface (except for section 2.5 Internal connection diagram)	Section 3.9	
Servo motor with an electromagnetic brake	Section 3.10	
Grounding	Section 3.11	Section 18.3.10

2.1 I/O signal connection example

2.1.1 MR-J4-_A_-RJ 100 W or more

(1) Point table method

POINT

Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with [Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)

Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (marked \oplus) of the servo amplifier to the protective earth (PE) of the cabinet.
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will malfunction and will not output signals, disabling EM2 (Forced stop 2) and other protective circuits.
3. The forced stop switch (normally closed contact) must be installed.
4. Supply $24 \mathrm{VDC} \pm 10 \%$ to interfaces from outside. The total current capacity is up to 500 mA .500 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 3.9.2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" that gives the current value necessary for the interface. A 24 V DC power supply can be used for both input signal and output signal.
5. When starting operation, always turn on EM2 (Forced stop 2), LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end) (normally closed contact).
6. ALM (Malfunction) turns on in normal alarm-free condition (normally closed contact).
7. The pins with the same signal name are connected in the servo amplifier.
8. TLA will be available when TL (External torque limit selection) is enabled with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46]. (Refer to section 3.6.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
9. Use SW1DNC-MRC2-_. (Refer to section 11.7 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
10. Controllers or parameter units can also be connected via the CN3 connector with the RS-422/RS-485 communication. Note that using the USB communication function (CN5 connector) prevents the RS-422/RS-485 communication function (CN3 connector) from being used, and vice versa. They cannot be used together.

11. Use an external power supply when inputting a negative voltage.
12. When not using the STO function, attach the short-circuit connector came with a servo amplifier.
13. Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent an unexpected restart of the servo amplifier.
14. This diagram shows sink I/O interface.
15. The device can be changed with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
16. Output device are not assigned by default. Assign the output device with [Pr. PD47] as necessary.
17. These device are recommended assignments. The device can be changed by [Pr. PD23] to [Pr. PD26], and [Pr. PD28].
18. DI2 and DI3 are assigned to the CN1-10 and CN1-35 pins by default. When connecting a manual pulse generator, change them with [Pr. PD44] and [Pr. PD46]. Refer to section 9.1 for details of the manual pulse generator.
19. Supply + of 24 V DC to OPC (Power input for open-collector sink interface) when input devices are assigned to the CN1-10 pin and the CN1-35 pin. They are not used with source input interface. For the positioning mode, input devices (DI2 and DI3) are assigned by default.
(2) Program method

POINT

Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with [Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)

Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (marked \oplus) of the servo amplifier to the protective earth (PE) of the cabinet.
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will malfunction and will not output signals, disabling EM2 (Forced stop 2) and other protective circuits.
3. The forced stop switch (normally closed contact) must be installed.
4. Supply $24 \mathrm{VDC} \pm 10 \%$ to interfaces from outside. The total current capacity is up to 500 mA .500 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 3.9.2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" that gives the current value necessary for the interface. A 24 V DC power supply can be used for both input signal and output signal.
5. When starting operation, always turn on EM2 (Forced stop 2), LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end) (normally closed contact).
6. ALM (Malfunction) turns on in normal alarm-free condition (normally closed contact).
7. The pins with the same signal name are connected in the servo amplifier.
8. TLA will be available when TL (External torque limit selection) is enabled with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46]. (Refer to section 3.6.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
9. Use SW1DNC-MRC2-_. (Refer to section 11.7 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
10. Controllers or parameter units can also be connected via the CN3 connector with the RS-422/RS-485 communication. Note that using the USB communication function (CN5 connector) prevents the RS-422/RS-485 communication function (CN3 connector) from being used, and vice versa. They cannot be used together.

11. Use an external power supply when inputting a negative voltage.
12. When not using the STO function, attach the short-circuit connector came with a servo amplifier.
13. Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent an unexpected restart of the servo amplifier.
14. This diagram shows sink I/O interface.
15. The device can be changed with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
16. Output device are not assigned by default. Assign the output device with [Pr. PD47] as necessary.
17. These device are recommended assignments. The device can be changed by [Pr. PD23] to [Pr. PD26], and [Pr. PD28].
18. DI2 and DI3 are assigned to the CN1-10 and CN1-35 pins by default. When connecting a manual pulse generator, change them with [Pr. PD44] and [Pr. PD46]. Refer to section 9.1 for details of the manual pulse generator.
19. Supply + of 24 V DC to OPC (Power input for open-collector sink interface) when input devices are assigned to the CN1-10 pin and the CN1-35 pin. They are not used with source input interface. For the positioning mode, input devices (DI2 and DI3) are assigned by default.
(3) Indexer method

POINT

In the indexer method, assign the following input device to CN1-18 pin with [Pr. PD10].
CN1-18: MD1 (Operation mode selection 2)
-Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with [Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)

Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (marked \oplus) of the servo amplifier to the protective earth (PE) of the cabinet.
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will malfunction and will not output signals, disabling EM2 (Forced stop 2) and other protective circuits.
3. The forced stop switch (normally closed contact) must be installed.
4. Supply $24 \mathrm{VDC} \pm 10 \%$ to interfaces from outside. The total current capacity is up to 500 mA .500 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 3.9.2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" that gives the current value necessary for the interface. A 24 V DC power supply can be used for both input signal and output signal.
5. When starting operation, always turn on EM2 (Forced stop 2), LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end) (normally closed contact).
6. ALM (Malfunction) turns on in normal alarm-free condition (normally closed contact).
7. The pins with the same signal name are connected in the servo amplifier.
8. TLA will be available when TL (External torque limit selection) is enabled with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46]. (Refer to section 3.6.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
9. Use SW1DNC-MRC2__ (Refer to section 11.7 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
10. Controllers or parameter units can also be connected via the CN3 connector with the RS-422/RS-485 communication. Note that using the USB communication function (CN5 connector) prevents the RS-422/RS-485 communication function (CN3 connector) from being used, and vice versa. They cannot be used together.

11. When not using the STO function, attach the short-circuit connector came with a servo amplifier.
12. Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent an unexpected restart of the servo amplifier.
13. This diagram shows sink I/O interface.
14. The signals can be changed with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
15. Output device are not assigned by default. Assign the output device with [Pr. PD47] as necessary.
16. These device are recommended assignments. The device can be changed by [Pr. PD23] to [Pr. PD26], and [Pr. PD28].
17. DI2 and DI3 are assigned to the CN1-10 and CN1-35 pins by default. When connecting a manual pulse generator, change them with [Pr. PD44] and [Pr. PD46]. Refer to section 9.1 for details of the manual pulse generator.
18. Supply + of 24 V DC to OPC (Power input for open-collector sink interface) when input devices are assigned to the CN1-10 pin and the CN1-35 pin. They are not used with source input interface. For the positioning mode, input devices (DI2 and DI3) are assigned by default.

2.1.2 MR-J4-03A6-RJ

(1) Point table method

POINT

Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with [Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)

Note 1. To prevent an electric shock, always connect the CNP1 noiseless grounding terminal (風marked) of the servo amplifier to the grounding terminal of the cabinet.
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will malfunction and will not output signals, disabling EM2 (Forced stop 2) and other protective circuits.
3. The forced stop switch (normally closed contact) must be installed.
4. Supply $24 \mathrm{~V} D C \pm 10 \%$ to interfaces from outside. The total current capacity of these power supplies must be 300 mA or lower. 300 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 3.9.2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" that gives the current value necessary for the interface. A $24 \vee$ DC power supply can be used for both input signal and output signal. For 24 V DC power for I/O signal, use power other than 24 V DC power of servo amplifier control circuit power supply.
5. When starting operation, always turn on EM2 (Forced stop 2), LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end). (Normally closed contact)
6. ALM (Malfunction) turns on in normal alarm-free condition. (Normally closed contact)
7. The pins with the same signal name are connected in the servo amplifier.
8. TLA will be available when TL (External torque limit selection) is enabled with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46]. (Refer to section 3.6.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
9. Use SW1DNC MRC2-_. (Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" section 11.7.)
10. The USB communication function and RS-422 communication function are mutually exclusive. They cannot be used together.
11. Use an external power supply when inputting a negative voltage.
12. Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent an unexpected restart of the servo amplifier.
13. This diagram shows sink I/O interface.
14. The devices can be changed with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
15. Recommended device assignments are shown. The device can be changed by [Pr. PD23] to [Pr. PD26], and [Pr. PD28].
16. DI2 and DI3 are assigned to the CN1-10 and CN1-35 pins by default. When connecting a manual pulse generator, change them with [Pr. PD44] and [Pr. PD46]. Refer to section 9.1 for details of the manual pulse generator.
17. Supply + of 24 DC V to OPC (Power input for open-collector sink interface) when input devices are assigned to the CN1-10 pin and the CN1-35 pin. They cannot be used with source input interface. For the positioning mode, input devices (DI2 and DI3) are assigned by default.
(2) Program method

POINT

Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with [Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)

2. SIGNALS AND WIRING

Note 1. To prevent an electric shock, always connect the CNP1 noiseless grounding terminal ((=marked) to the grounding terminal of the cabinet.
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will malfunction and will not output signals, disabling EM2 (Forced stop 2) and other protective circuits.
3. The forced stop switch (normally closed contact) must be installed.
4. Supply $24 \mathrm{~V} \mathrm{DC} \pm 10 \%$ to interfaces from outside. The total current capacity of these power supplies must be 300 mA or lower. 300 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 3.9.2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" that gives the current value necessary for the interface. A $24 \vee D C$ power supply can be used for both input signal and output signal. For $24 \mathrm{~V} D C$ power for I/O signal, use power other than 24 V DC power of servo amplifier control circuit power supply.
5. When starting operation, always turn on EM2 (Forced stop 2), LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end). (Normally closed contact)
6. ALM (Malfunction) turns on in normal alarm-free condition. (Normally closed contact)
7. The pins with the same signal name are connected in the servo amplifier.
8. TLA will be available when TL (External torque limit selection) is enabled with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46]. (Refer to section 3.6.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
9. Use SW1DNC MRC2-_. (Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" section 11.7.)
10. The USB communication function and RS-422 communication function are mutually exclusive. They cannot be used together.
11. Use an external power supply when inputting a negative voltage.
12. Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent an unexpected restart of the servo amplifier.
13. This diagram shows sink I/O interface.
14. The devices can be changed with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
15. Recommended device assignments are shown. The device can be changed by [Pr. PD23] to [Pr. PD26], and [Pr. PD28].
16. DI2 and DI3 are assigned to the CN1-10 and CN1-35 pins by default. When connecting a manual pulse generator, change them with [Pr. PD44] and [Pr. PD46]. Refer to section 9.1 for details of the manual pulse generator.
17. Supply + of $24 \mathrm{DC} V$ to OPC (Power input for open-collector sink interface) when input devices are assigned to the CN1-10 pin and the CN1-35 pin. They cannot be used with source input interface. For the positioning mode, input devices (DI2 and DI3) are assigned by default.
(3) Indexer method

POINT

In the indexer method, assign the following input device to CN1-18 pin with [Pr. PD10].
CN1-18: MD1 (Operation mode selection 2)
Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with [Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)

2. SIGNALS AND WIRING

Note 1. To prevent an electric shock, always connect the CNP1 noiseless grounding terminal ((=marked) to the grounding terminal of the cabinet.
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will malfunction and will not output signals, disabling EM2 (Forced stop 2) and other protective circuits.
3. The forced stop switch (normally closed contact) must be installed.
4. Supply $24 \mathrm{~V} \mathrm{DC} \pm 10 \%$ to interfaces from outside. The total current capacity of these power supplies must be 300 mA or lower. 300 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 3.9.2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" that gives the current value necessary for the interface. A 24 V DC power supply can be used for both input signal and output signal. For 24 V DC power for I/O signal, use power other than 24 V DC power of servo amplifier control circuit power supply.
5. When starting operation, always turn on EM2 (Forced stop 2), LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end). (Normally closed contact)
6. ALM (Malfunction) turns on in normal alarm-free condition. (Normally closed contact)
7. The pins with the same signal name are connected in the servo amplifier.
8. TLA will be available when TL (External torque limit selection) is enabled with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46]. (Refer to section 3.6.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
9. Use SW1DNC MRC2-_. (Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" section 11.7.)
10. The USB communication function and RS-422 communication function are mutually exclusive. They cannot be used together.
11. Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent an unexpected restart of the servo amplifier.
12. This diagram shows sink I/O interface.
13. The devices can be changed with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
14. Recommended device assignments are shown. The device can be changed by [Pr. PD23] to [Pr. PD26], and [Pr. PD28].
15. DI2 and DI3 are assigned to the CN1-10 and CN1-35 pins by default. When connecting a manual pulse generator, change them with [Pr. PD44] and [Pr. PD46]. Refer to section 9.1 for details of the manual pulse generator.
16. Supply + of 24 DC V to OPC (Power input for open-collector sink interface) when input devices are assigned to the CN1-10 pin and the CN1-35 pin. They cannot be used with source input interface. For the positioning mode, input devices (DI2 and DI3) are assigned by default.

2. SIGNALS AND WIRING

2.2 Connectors and pin assignment

POINT

The pin assignment of the connectors is as viewed from the cable connector wiring section.
-For the STO I/O signal connector (CN8), refer to chapter 13 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
-For the CN1 connector, securely connect the external conductor of the shielded cable to the ground plate and fix it to the connector shell.

PP (CN1-10 pin) /NP (CN1-35 pin) and PP2 (CN1-37 pin) /NP2 (CN1-38 pin) are exclusive. They cannot be used together.
(1) MR-J4-_A_-RJ 100 W or more

The servo amplifier front view shown is that of the MR-J4-20A-RJ or less. For other views of servo amplifiers, connector arrangements, and details, refer to chapter 9 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

Note 1. This CN2L is a connector of 3 M .
When using any other connector, refer to each servo motor instruction manual.
2. For the connection with external encoders, refer to table 1.1 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

The device assignment of CN1 connector pins changes depending on the control mode. For the pins which are given parameters in the related parameter column, their devices will be changed using those parameters.

Pin No.	(Note 1) I/O	(Note 2) I/O signals in control modes			Related parameter
		CP/BCD (Note 7)	CL	PS	
1	,	P15R	P15R	P15R	
2	I	VC	VC	-	
3	\bigcirc	LG	LG	LG	
4	0	LA	LA	LA	
5	O	LAR	LAR	LAR	
6	O	LB	LB	LB	
7	0	LBR	LBR	LBR	
8	0	LZ	LZ	LZ	
9	0	LZR	LZR	LZR	
10	(Note 8) I	(Note 10) DI2	(Note 10) DI2	(Note 10) DI2	Pr. PD44 (Note 9)
11	I	PG	PG	PG	
12	${ }^{-}$	OPC	OPC	OPC	
13	0	(Note 4)	(Note 4)	(Note 4)	Pr. PD47
14	O	(Note 4)	(Note 4)	(Note 4)	Pr. PD47
15	I	SON	SON	SON	Pr. PD04
16	I	MD0	MD0	MD0	Pr. PD06
17	I	ST1	ST1	ST1	Pr. PD08
18	I	ST2	ST2	(Note 5) MD1	Pr. PD10
19	I	DIO	DIO	DIO	Pr. PD12
20	-	DICOM	DICOM	DICOM	
21	-	DICOM	DICOM	DICOM	
22	0	$\begin{gathered} \text { (Note 6) } \\ \text { CPO } \end{gathered}$	$\begin{gathered} \text { (Note 6) } \\ \text { CPO } \end{gathered}$	$\begin{gathered} \text { (Note 6) } \\ \text { CPO } \end{gathered}$	Pr. PD23
23	0	(Note 6) ZP	(Note 6) ZP	(Note 6) ZP	Pr. PD24
$\begin{gathered} 24 \text { or } \\ \text { less } \end{gathered}$	0	INP	INP	INP	Pr. PD25
25	0	(Note 6) MEND	(Note 6) MEND	(Note 6) MEND	Pr. PD26
26	-	$\mathrm{S}^{\text {3 }}$	S	-	
27	1	(Note 3) TLA	(Note 3) TLA	(Note 3) TLA	-
28	-	LG	LG	LG	
29	\bigcirc	SG	$\mathrm{S}^{\text {ces }}$	$\mathrm{S}^{\text {cos }}$	
30	-	LG	LG	LG	
31	\bigcirc	-	S^{-}	S^{-}	
32	-	,	-	$\mathrm{PP}^{\text {cher }}$	
33	0	OP	OP	OP	
34		LG	LG	LG	
35	(Note 8) I	(Note 10) DI3	(Note 10) DI3	(Note 10) DI3	Pr. PD46 (Note 9)
36	1	NG	NG	NG	
$\begin{gathered} 37 \\ \text { (Note 12) } \end{gathered}$	I	(Note 11)	(Note 11)	(Note 11)	Pr. PD44 (Note 9)
38 (Note 12)	I	(Note 11)	(Note 11)	(Note 11)	Pr. PD46 (Note 9)
39	-	-	-	-	
40	-	-	-	-	
41	1	DI1	DI1	DI1	Pr. PD14
42	I	EM2	EM2	EM2	
43	I	LSP	LSP	LSP	Pr. PD18
44	1	LSN	LSN	LSN	Pr. PD20
45	I	DOG	DOG	SIG	Pr. PD22
46	-	DOCOM	DOCOM	DOCOM	
47	${ }^{2}$	DOCOM	DOCOM	DOCOM	
48	0	ALM	ALM	ALM	
49	0	RD	RD	RD	Pr. PD28
50	\bigcirc	-	,	-	

Note 1. I: input signal, O: output signal
2. CP: Positioning mode (point table method)

BCD: Positioning mode (point table method in the BCD input positioning operation) This method is available only when the MR-D01 unit is connected. Refer to chapter 12 for details.
CL: Positioning mode (program method)
PS: Positioning mode (indexer method)
3. TLA will be available when TL (External torque limit selection) is enabled with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
4. Assign any device with [Pr. PD47].
5. In the indexer method, assign the following input device to CN1-18 pin with [Pr. PD10]. CN1-18: MD1 (Operation mode selection 2)
6. Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with [Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)
7. For BCD input, refer to chapter 12.
8. Supply + of 24 V DC to OPC (power input for open-collector sink interface) when using the CN1-10 pin and CN1-35 pin for DI.
9. This parameter is available with servo amplifiers with software version $B 7$ or later.
10. This signal is used with sink interface. Input devices are not assigned by default. Assign the input devices with [Pr. PD44] and [Pr. PD46] as necessary. In addition, supply + of 24 DC V to the CN1-12 pin of OPC (Power input for open-collector sink interface). This is available with servo amplifiers with software version B7 or later.
11. This signal is used with source interface. Input devices are not assigned by default. Assign the input devices with [Pr. PD44] and [Pr. PD46] as necessary.
12. These pins are available with servo amplifiers having software version B7 or later, and manufactured in January 2015 or later.
(2) MR-J4-03A6-RJ

For the views of servo amplifiers, connector arrangements, and details, refer to section 18.6 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

The device assignment of the CN1 connector pins changes depending on the control mode. For the pins which are given parameters in the related parameter column, their devices can be changed using those parameters.

Pin No.	(Note 1) I/O	(Note 2) I/O signals in control modes			Related parameter
		CP	CL	PS	
1	${ }^{-}$	P15R	P15R	P15R	
2	I	VC	VC	${ }^{\text {L }}$	
3	O^{-}	LG	LG	LG	
4	O	LA	LA	LA	
5	O	LAR	LAR	LAR	
6	O	LB	LB	LB	
7	O	LBR	LBR	LBR	
8	O	LZ	LZ	LZ	
9	O	LZR	LZR	LZR	
10	(Note 6) I	(Note 8)	(Note 8)	(Note 8)	Pr. PD44 (Note 7)
11	I	PG	PG	PG	
12	\square^{-}	OPC	OPC	OPC	
13	0	SDP	SDP	SDP	
14	O	SDN	SDN	SDN	
15	I	SON	SON	SON	Pr. PD04
16	I	MD0	MD0	MD0	Pr. PD06
17	I	ST1	ST1	ST1	Pr. PD08
18	I	ST2	ST2	(Note 4) MD1	Pr. PD10
19	I	DIO	DIO	DIO	Pr. PD12
20	${ }^{2}$	DICOM	DICOM	DICOM	
21	\bigcirc	DICOM	DICOM	DICOM	
22	0	$\begin{gathered} \text { (Note 5) } \\ \text { CPO } \end{gathered}$	$\begin{gathered} \text { (Note 5) } \\ \text { CPO } \end{gathered}$	$\begin{gathered} \text { (Note 5) } \\ \text { CPO } \end{gathered}$	Pr. PD23
23	0	(Note 5) ZP	(Note 5) ZP	(Note 5) ZP	Pr. PD24
24	O	INP	INP	INP	Pr. PD25
25	0	(Note 5) MEND	(Note 5) MEND	(Note 5) MEND	Pr. PD26
26	O	MO1	MO1	MO1	Pr. PC14
27	1	(Note 3) TLA	(Note 3) TLA	(Note 3) TLA	
28	-	LG	LG	LG	
29	0	MO2	MO2	MO2	Pr. PC15
30	${ }^{-}$	LG	LG	LG	
31	I	TRE	TRE	TRE	
32		\bigcirc	-	-	
33	0	OP	OP	OP	
34	1	LG	LG	LG	
35	(Note 6) I	(Note 8)	(Note 8)	(Note 8)	Pr. PD46 (Note 7)
36	I	NG	NG	NG	
37	1	(Note 9)	(Note 9)	(Note 9)	Pr. PD44 (Note 7)
38	I	(Note 9)	(Note 9)	(Note 9)	Pr. PD46 (Note 7)
39	I	RDP	RDP	RDP	
40	I	RDN	RDN	RDN	
41	1	DI1	DI1	DI1	Pr. PD14
42	I	EM2	EM2	EM2	
43	I	LSP	LSP	LSP	Pr. PD18
44	I	LSN	LSN	LSN	Pr. PD20
45	I	DOG	DOG	SIG	Pr. PD22
46	${ }^{1}$	DOCOM	DOCOM	DOCOM	
47	-	DOCOM	DOCOM	DOCOM	
48	0	ALM	ALM	ALM	
49	0	RD	RD	RD	Pr. PD28
50	\bigcirc	-	T	-	

Note 1. I: input signal, O: output signal
2. CP: Positioning mode (point table method)

CL: Positioning mode (program method)
PS: Positioning mode (indexer method)
3. TLA will be available when TL (External torque limit selection) is enabled with [Pr . PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
4. In the indexer method, assign the following input device to CN1-18 pin with [Pr. PD10]. CN1-18: MD1 (Operation mode selection 2)
5. Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with [Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)
6. Supply + of 24 V DC to OPC (power input for open-collector sink interface) when using the CN1-10 and CN1-35 pins for DI.
7. This is available with servo amplifiers with software version B7 or later.
8. This is used with sink interface. Input devices are not assigned by default. Assign the input devices with [Pr. PD44] and [Pr. PD46] as necessary. In addition, supply + of 24 DC V to the CN1-12 pin of OPC (Power input for open-collector sink interface).
9. This is used with source interface. Input devices are not assigned by default. Assign the input devices with [Pr. PD44] and [Pr. PD46] as necessary.

2. SIGNALS AND WIRING

2.3 Signal (device) explanations

The pin numbers in the connector pin No. column are those in the initial status.
For the I/O interfaces (symbols in I/O division column in the table), refer to section 2.5. The symbols in the control mode field of the table shows the followings.
CP: Positioning mode (point table method)
BCD: Positioning mode (point table method in the BCD input positioning operation)
This method is available only when the MR-D01 unit is connected. Refer to chapter 12 for details.
CL: Positioning mode (program method)
PS: Positioning mode (indexer method)
" \bigcirc " and " Δ " of the table shows the followings.
O: Usable device by default.
Δ : Usable device by setting the following parameters.
[Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22] to [Pr. PD26], [Pr. PD28], [Pr. PD44], [Pr. PD46], and [Pr. PD47]
(1) I/O device
(a) Input device

Device	Symbol	Connector pin No.	Function and application				$\left\lvert\, \begin{array}{\|c\|} \hline \text { I/O } \\ \text { division } \end{array}\right.$	Control mode			
							O	Ј	の		
Forced stop 2	EM2	CN1-42	Turn off EM2 stop with com Turn EM2 on that state. The following	(open betw mands. (short bet shows the EM2/EM1 EM1 EM2 1 are mutual	een commons) to decele ween commons) in the setting of [Pr. PA04]. Decelerati EM2 or EM1 is off MBR (Electromagnetic brake interlock) turns off without the forced stop deceleration. MBR (Electromagnetic brake interlock) turns off after the forced stop deceleration. ally exclusive.	rate the servo motor to a orced stop state to reset		DI-1	\bigcirc	\bigcirc	\bigcirc
Forced stop 1	EM1	(CN1-42)	When using EM1, set [Pr. PA04] to "0 \qquad " to enable EM1. Turn EM1 off (open between commons) to bring the motor to a forced stop state. The base circuit is shut off, the dynamic brake is operated and decelerates the servo motor to a stop. Turn EM1 on (short between commons) in the forced stop state to reset that state.				DI-1	\triangle	\triangle	\triangle	
Servo-on	SON	CN1-15	Turn SON on to power on the base circuit and make the servo amplifier ready to operate. (servo-on status) Turn it off to shut off the base circuit and coast the servo motor. Set "___4" in [Pr. PD01] to switch this signal on (keep terminals connected) automatically in the servo amplifier.				DI-1	\bigcirc	\bigcirc	\bigcirc	
Reset	RES		Turn on RES for more than 50 ms to reset the alarm. Some alarms cannot be deactivated by RES (Reset). Refer to chapter 8. Turning RES on in an alarm-free status shuts off the base circuit. The base circuit is not shut off when " $__{-} 1_{-}$" is set in [Pr. PD30]. This device is not designed to make a stop. Do not turn it on during operation.				DI-1	\triangle	\triangle	\triangle	

2. SIGNALS AND WIRING

Device	Symbol	Connector pin No.	Function and application				$\left\lvert\, \begin{array}{\|c\|} \hline \text { I/O } \\ \text { division } \end{array}\right.$	Control mode			
							O	Ј	の		
Forward rotation stroke end	LSP	CN1-43	To start operation, turn on LSP and LSN. Turn it off to bring the motor to a sudden stop and make it servo-locked. Setting [Pr. PD30] to " _ _ 1" will enable "Slow stop (home position erased)".					DI-1	\bigcirc	\bigcirc	\bigcirc
Reverse rotation stroke end	LSN	CN1-44	(Note) Input device		Operation						
			LSP	LSN	CCW direction Positive direction	CW direction Negative direction					
			1	1	\bigcirc	\bigcirc					
			0	1	-	\bigcirc					
			1	0	\bigcirc						
			0	0							
			Note. 0: 1:								
			The stop method can be changed with [Pr. PD30]. Set [Pr. PD01] as indicated below to switch on the signals (keep terminals connected) automatically in the servo amplifier.								
			[Pr. PD01]		Status						
					LSP	LSN					
					Automatic on						
						Automatic on					
					Automatic on	Automatic on					
			When LSP or L (Warning) turns [Pr. PD26], [Pr. However, [Pr.	ns off, hen us , and [is not a	99 Stroke WNG, ena PD47]. able with MR	mit warning] occurs, and WNG e it by setting [Pr. PD23] to -J4-03A6-RJ servo amplifiers.					
External torque limit selection	TL		Turning off TL Reverse torque limit). For detai Amplifier Instru For the indexer automatically d section 6.2 and	able $[\mathrm{Pr}$ and tu r to se Manual" d, [Pr. ing on n 6.4.5	A11 Forwar g on it will 3.6.1 (5) 35 Internal ration statu	torque limit] and [Pr. PA12 nable TLA (Analog torque "MR-J4-_A_(-RJ) Servo rque limit 2] will be enabled Refer to each timing chart in	DI-1	\triangle	\triangle	\triangle	
Internal torque limit selection	TL1		To select [Pr. P TL1 with [Pr. P PD14], [Pr. PD details, refer to Instruction Man For the indexer automatically d section 6.2 and	internal Pr. PD r. PD20 3.6.1 d, [Pr. ing on n 6.4.5	que limit 2/in [Pr. PD08] Pr. PD22], of "MR-J4- 35 Internal ration statu	ernal thrust limit 2], enable Pr. PD10], [Pr. PD12], [Pr. r. PD44], and [Pr. PD46]. For A_(-RJ) Servo Amplifier rque limit 2] will be enabled Refer to each timing chart in	DI-1	\triangle	\triangle	\triangle	

2. SIGNALS AND WIRING

Device	Symbol	Connector pin No.	Function and application			I/O division	Control mode			
						O 0 0 0 0	U	か		
Operation mode selection 1	MD0	CN1-16	Point table method/program method Turning on MD0 will be automatic operation mode, off will be manual operation mode. Changing an operation mode during operation will clear the command remaining distance and the motor will decelerate to stop. MD1 cannot be used. Indexer method Select an operation mode with combinations of MD0 and MD1. Refer to the following table for combinations. Changing an operation mode during operation will clear the command remaining distance and the motor will decelerate to stop.				DI-1	\bigcirc	\bigcirc	\bigcirc
Operation mode selection 2	MD1		operation mode the command r MD1 cannot be Indexer method Select an opera following table for Changing an op remaining dista Note. 0: O 1:	nging dist ode w mbinati MD mod 0 1 0 1	ration mode during operation will clear and the motor will decelerate to stop. mbinations of MD0 and MD1. Refer to the ing operation will clear the command will decelerate to stop.	DI-1		\triangle		

Device	Symbol	Connector pin No.	Function and application	$\left\lvert\, \begin{gathered} \text { I/O } \\ \text { division } \end{gathered}\right.$	Control mode		
					O 0 0 0 0 0	Ј	の
Forward rotation start	ST1	CN1-17	Point table method 1. Absolute value command method Turning on ST1 during automatic operation will execute one positioning based on position data set in point tables. Turning on ST1 during home position return will also start home position return. Turning on ST1 during JOG operation will rotate the motor in the forward rotation direction while it is on. The forward rotation means address increasing direction. Turning on both ST1 and ST2 during JOG operation will stop the servo motor. 2. Incremental value command method Turning on ST1 during automatic operation will execute one positioning in the forward rotation direction based on position data set in point tables. Turning on ST1 during home position return will also start home position return. Turning on ST1 during JOG operation will rotate the motor in the forward rotation direction while it is on. The forward rotation means address increasing direction. Turning on both ST1 and ST2 during JOG operation will stop the servo motor.	DI-1	\bigcirc		
			Program method 1. Automatic operation mode Turning on ST1 will execute a program operation selected with DIO to DI7. The forward rotation means address increasing direction. Turning on both ST1 and ST2 during manual operation mode will stop the servo motor. 2. Manual operation mode Turning on ST1 will rotate the motor in the forward rotation direction while it is on. The forward rotation means address increasing direction. Turning on both ST1 and ST2 during manual operation mode will stop the servo motor.			\bigcirc	
			Indexer method 1. Automatic operation mode 1 or automatic operation mode 2 Turning on ST1 will execute one positioning to the specified station No. 2. Manual operation mode Turning on ST1 with the station JOG operation will rotate the motor in the specified direction with SIG only while it is on. Turning off ST1 will execute a positioning to a station which can be decelerated to a stop. Turning on ST1 with JOG operation will rotate the motor in the direction specified with SIG only while it is on. Turning off will decelerate the motor to a stop regardless of stations. 3. Home position return mode Turning on ST1 will also start home position return.				\bigcirc
Reverse rotation start	ST2	CN1-18	Point table method Use this device with the incremental value command method. Turning on ST2 during automatic operation will execute one positioning in the reverse rotation direction based on position data set in point tables. Turning on ST2 during JOG operation will rotate the motor in the reverse rotation direction while it is on. Turning on both ST1 and ST2 will stop the servo motor. Turning on ST2 during in the home position return mode will execute an automatic positioning to the home position. The reverse rotation means address decreasing direction. Turning on both ST1 and ST2 during JOG operation will stop the servo motor.	DI-1	\bigcirc		
			Program method Turning on ST2 with JOG operation in the manual operation mode will rotate the motor in the reverse rotation direction while it is on. Turning on both ST1 and ST2 will stop the servo motor. The reverse rotation means address decreasing direction. Turning on both ST1 and ST2 during manual operation mode will stop the servo motor. ST2 will be disabled in the automatic operation mode.		$\$ & \bigcirc	\}	
			Indexer method This device is not used.				

2. SIGNALS AND WIRING

2. SIGNALS AND WIRING

(b) Output device

Device	Symbol	Connector pin No.	Function and application	I/O division	Control mode		
					O	U	ロ
Malfunction	ALM	CN1-48	When an alarm occurs, ALM will turn off. When an alarm does not occur, ALM will turn on after 4 s to 5 s after power-on. When [Pr. PD34] is "__ 1 _", an alarming or warning will turn off ALM.	DO-1	\bigcirc	\bigcirc	\bigcirc
Malfunction/War ning	ALM WNG		When an alarm occurs, ALMWNG will turn off. When a warning (except [AL. 9F Battery warning]) occurs on and off will be repeated every 1 s . When an alarm/warning is not occurring, turning on the power will turn on ALMWNG after 4 s to 5 s .	DO-1	\triangle	\triangle	\triangle
Warning	WNG		When warning has occurred, WNG turns on. When a warning is not occurring, turning on the power will turn off WNG after 4 s to 5 s .	DO-1	\triangle	\triangle	\triangle
Battery warning	BWNG		BWNG turns on when [AL. 92 Battery cable disconnection warning] or [AL. 9F Battery warning] has occurred. When the battery warning is not occurring, turning on the power will turn off BWNG after 4 s to 5 s .	DO-1	\triangle	Δ	\triangle
AL9F warning	BW9F		When [AL. 9F Battery warning] occurs, BW9F will turn on.	DO-1	\triangle	\triangle	\triangle
Dynamic brake interlock	DB		When using the signal, enable it by setting [Pr. PD23] to [Pr. PD26], [Pr. PD28], and [Pr. PD47]. DB turns off when the dynamic brake needs to operate. When using an external dynamic brake with the servo amplifier of 11 kW or more, this device is required. (Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" section 11.17.) For the servo amplifier of 7 kW or less, it is not necessary to use this device.	DO-1	\triangle	\triangle	\triangle
Ready	RD	CN1-49	Enabling servo-on to make the servo amplifier ready to operate will turn on RD.	DO-1	\bigcirc	\bigcirc	\bigcirc
In-position	INP	CN1-24	When the number of droop pulses is in the preset in-position range, INP will turn on. The in-position range can be changed using [Pr. PA10]. When the in-position range is increased, INP may be on during low-speed rotation. INP turns on when servo-on turns on.	DO-1	\bigcirc	\bigcirc	\bigcirc
Limiting torque	TLC	CN1-25	TLC turns on when a generated torque reaches a value set with any of [Pr. PA11 Forward torque limit], [Pr. PA12 Reverse torque limit], or TLA (Analog torque limit).	DO-1	\bigcirc	\bigcirc	\bigcirc
Zero speed detection	ZSP	CN1-23	ZSP turns on when the servo motor speed is zero speed (50r/min) or less. Zero speed can be changed with [Pr. PC17]. ZSP will turn on when the servo motor is decelerated to $50 \mathrm{r} / \mathrm{min}($ at 1$)$), and will turn off when the servo motor is accelerated to $70 \mathrm{r} / \mathrm{min}$ again (at 2)). ZSP will turn on when the servo motor is decelerated again to $50 \mathrm{r} / \mathrm{min}$ (at 3)), and will turn off when the servo motor speed has reached $-70 \mathrm{r} / \mathrm{min}$ (at 4)). The range from the point when the servo motor speed has reached on level, and ZSP turns on, to the point when it is accelerated again and has reached off level is called hysteresis width. Hysteresis width is $20 \mathrm{r} / \mathrm{min}$ for this servo amplifier.	DO-1	\bigcirc	\bigcirc	\bigcirc

Device	Symbol	Connector pin No.	Function and application	I/O division	Control mode				
					O 0 0 0 0	Ј	か		
Electromagnetic brake interlock	MBR		When using the device, set operation delay time of the electromagnetic brake in [Pr. PC16]. When a servo-off status or alarm occurs, MBR will turn off.	DO-1	\triangle	\triangle	\triangle		
Speed command reached	SA		When a command speed is within a target speed at servo-on status, SA will be on. When the command speed is $0 \mathrm{r} / \mathrm{min}(\mathrm{mm} / \mathrm{s})$, this will be continuously on. When the command speed is in acceleration/deceleration or at servo-off status, SA will be off.	DO-1	\triangle	\triangle	\}		
Home position return completion	ZP		When a home position return completes normally, ZP (Home position return completion) will be on. This will be off with the following conditions in the incremental system. 1) SON (Servo-on) is off. 2) EM2 (Forced stop 2) is off. 3) RES (Reset) is on. 4) At alarm occurrence 5) LSP (Forward rotation stroke end) or LSN (Reverse rotation stroke end) is off. 6) Home position return is not being executed. 7) Software limit is being detected. 8) Home position return is in progress. If once home position return is completed in the absolute position detection system, ZP (Home position return completion) will be the same output status as RD (Ready). However, it will be off with the above 1) to 8) and the following conditions. 9) The home position return is not performed after [AL. 25 Absolute position erased] or [AL. E3 Absolute position counter warning] occurred. 10) The home position return is not performed after the electronic gear ([Pr. PA06] or [Pr. PA07]) was changed. 11) The home position return is not performed after the setting of $[\mathrm{Pr}$. PA03 Absolute position detection system selection] was changed from "Disabled" to "Enabled". 12) [Pr. PA14 Rotation direction selection/travel direction selection] was changed. 13) [Pr. PA01 Operation mode] was changed. 14) [Pr. PT08 Home position return position data] or [Pr. PT28 Number of stations per rotation] was changed.	DO-1	\triangle	\triangle	\triangle		
Rough match	CPO		When a command remaining distance is lower than the rough match output range set with [Pr. PT12], CPO will be on. This is not outputted during base circuit shut-off. CPO turns on with servo-on.	DO-1	\triangle	\triangle	\triangle		
Position range output	POT		When an actual current position is within the range set with [Pr. PT21] and [Pr. PT22], POT will be on. This will be off when a home position return does not complete or base circuit shut-off is in progress.	DO-1	Δ	\triangle	人		
Temporary stop	PUS		When a deceleration begins for a stop, PUS will be on by TSTP (Temporary stop/restart). When you enable TSTP (Temporary stop/restart) again and start operation, PUS will be off.	DO-1	\triangle	\triangle	\}		
Travel completion	MEND		When the droop pulses are within the in-position output range set with [Pr. PA10] and the command remaining distance is " 0 ", MEND will be on. MEND turns on with servo-on. MEND is off at servo-off status. However, MEND will not be off in the indexer method.	DO-1	\triangle	\triangle	\triangle		
Position end	PED		When the droop pulses are within the position end output range set with [Pr. PA10] and the command remaining distance is "0", PED will be on. When MEND (Travel completion) is on and ZP (Home position return completion) is on, PED (Position end) will be on. When ZP (Home position return completion) is on with servo-on status, PED will be on. PED is off at servo-off status.	DO-1	\triangle	\triangle	$\$ \hlineSYNC synchronous output & SOUT & & When the status is waiting for input of the program SYNC (1 to 3), SOUT will be on. When PI1 (Program input 1) to PI3 (Program input 3) turn on, SOUT will be off. & DO-1 & \bigcirc	\triangle	\}

2. SIGNALS AND WIRING

2. SIGNALS AND WIRING

Device	Symbol	Connector pin No.	Function and application	$\left\lvert\, \begin{gathered} \text { I/O } \\ \text { division } \end{gathered}\right.$	Control mode		
Mark detection rising latch completed	MSDH		Turning on MSD (Mark detection) will turn on MSDH.	DO-1	\triangle	\triangle	
Mark detection falling latch completed	MSDL		After MSD (Mark detection) is turned on, turning off MSD will turn on MSDL.	DO-1	\triangle	\triangle	\bigcirc
Alarm code	ACD0	(CN1-24)	To use these signals, set " _ _ _ 1" in [Pr. PD34]. This signal is outputted when an alarm occurs. When an alarm is not occurring, respective ordinary signals are outputted. For details of the alarm codes, refer to chapter 8.	DO-1	\triangle	\triangle	\triangle
	ACD1	(CN1-23)					
	ACD2	(CN1-22)					
Variable gain selection	CDPS		CDPS turns on during gain switching.	DO-1	\triangle	\triangle	\triangle
Absolute position undetermined	ABSV		ABSV turns on when the absolute position is undetermined.	DO-1	\triangle	\triangle	\triangle
During tough drive	MTTR		When a tough drive is "Enabled" in [Pr. PA20], activating the instantaneous power failure tough drive will turn on MTTR. This device is not available with MR-J4-03A6-RJ servo amplifiers.	DO-1	\triangle	\triangle	\triangle
During fully closed loop control	CLDS		CLDS turns on during fully closed loop control. This device is not available with MR-J4-03A6-RJ servo amplifiers.	DO-1	\triangle	\triangle	\checkmark
Under cam control	CAMS		It turns on when the control switches to the cam control. It turns off when the control switches to the normal positioning control.	DO-1	\triangle	\triangle	
Cam position compensation execution completed	CPCC		It turns on when the com compensation execution is enabled. It turns on when the position compensation is not being executed during the cam control.	DO-1	\triangle	\triangle	\checkmark
Clutch on/off status	CLTS		It turns on with clutch-on. It is always off when "Cam control data No. 36 - Main shaft clutch control setting" is set to "___0".	DO-1	\triangle	\triangle	\bigcirc
Clutch smoothing status	CLTSM		It outputs clutch smoothing status. The output depends on the setting in "Cam control data No. 42 - Main shaft clutch smoothing system" as follows: 0 : Direct Always off 1: Time constant method (index) Always on in clutch-on status It turns off when the clutch is off and the smoothing is complete.	DO-1	\triangle	\triangle	,

(2) Input signal

Device	Symbol	Connector pin No.	Function and application	I/O division	Control mode		
					O	J	¢
Manual pulse generator	PP	(CN1-10)	Connect the manual pulse generator (MR-HDP01). When using the signal, enable PP and NP with [Pr. PD44] and [Pr. PD46].	DI-2	\triangle	\triangle	\}
	NP	(CN1-35)					

Device	Symbol	Connector pin No.	Function and application	$\left\lvert\, \begin{gathered} \text { I/O } \\ \text { division } \end{gathered}\right.$	Control mode		
					O 0 0 0 0	Ј	の
Analog torque limit	TLA	CN1-27	When using the signal, enable TL (External torque limit selection) with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46]. When TLA is enabled, torque is limited in the full servo motor output torque range. Apply 0 V to +10 V DC between TLA and LG. Connect the positive terminal of the power supply to TLA. The maximum torque is generated at +10 V. (Refer to section 3.6.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".) If a value equal to or larger than the maximum torque is inputted to TLA, the value is clamped at the maximum torque. Resolution: 10 bits	Analog input	\triangle	\triangle	\triangle
Analog override	VC	CN1-2	The signal controls the servo motor setting speed by applying -10 V to +10 V to between VC and LG. The percentage will be 0% with $-10 \mathrm{~V}, 100 \%$ with 0 V , and 200% with +10 V to the setting speed of the servo motor. Resolution: 14 bits or equivalent For MR-J4-_A_-RJ 100 W or more servo amplifiers, setting [Pr. PC60] to "_ _ 1 _" increases the analog input resolution to 16 bits. This function is available with servo amplifiers manufactured in November 2014 or later.	Analog input	O	\bigcirc	

(3) Output signal
(a) MR-J4-_A_-RJ 100 W or more

Device	Symbol	Connector pin No.	Function and application	$\left\lvert\, \begin{array}{c\|} \hline \text { I/O } \\ \text { division } \end{array}\right.$	Control mode		
					O	Ј	の
Encoder Aphase pulse (differential line driver)	$\begin{aligned} & \text { LA } \\ & \text { LAR } \end{aligned}$	$\begin{aligned} & \text { CN1-4 } \\ & \text { CN1-5 } \end{aligned}$	These devices output pulses of encoder output pulse set in [Pr. PA15] in the differential line driver type. In CCW rotation of the servo motor, the encoder B-phase pulse lags the encoder A-phase pulse by a phase angle of $\pi / 2$.	DO-2	\bigcirc	\bigcirc	\bigcirc
Encoder Bphase pulse (differential line driver)	$\begin{gathered} \hline \mathrm{LB} \\ \mathrm{LBR} \end{gathered}$	$\begin{aligned} & \hline \text { CN1-6 } \\ & \text { CN1-7 } \end{aligned}$	The relation between rotation direction and phase difference of the Aphase and B-phase pulses can be changed with [Pr. PC19].				
Encoder Zphase pulse (differential line driver)	$\begin{gathered} \hline \mathrm{LZ} \\ \mathrm{LZR} \end{gathered}$	$\begin{aligned} & \text { CN1-8 } \\ & \text { CN1-9 } \end{aligned}$	The encoder zero-point signal is outputted in the differential line driver type. One pulse is outputted per servo motor revolution. This turns on when the zero-point position is reached. (negative logic) The minimum pulse width is about $400 \mu \mathrm{~s}$. For home position return using this pulse, set the creep speed to $100 \mathrm{r} / \mathrm{min}$ or less.	DO-2	O	O	O
Encoder Zphase pulse (open-collector)	OP	CN1-33	The encoder zero-point signal is outputted in the open-collector type.	DO-2	\bigcirc	\bigcirc	\bigcirc
Analog monitor 1	MO1	CN6-3	This is used to output the data set in [Pr. PC14] to between MO1 and LG in terms of voltage. Output voltage: $\pm 10 \mathrm{~V}$ Resolution: 10 bits or equivalent	Analog output	O	O	O
Analog monitor 2	MO2	CN6-2	This signal outputs the data set in [Pr. PC15] to between MO2 and LG in terms of voltage. Output voltage: $\pm 10 \mathrm{~V}$ Resolution: 10 bits or equivalent	Analog output	O	O	O

2. SIGNALS AND WIRING

(b) MR-J4-03A6-RJ

Device	Symbol	Connector pin No.	Function and application	$\begin{array}{\|c\|} \hline \text { I/O } \\ \hline \text { division } \end{array}$	Control mode		
					C	C	P
Encoder Aphase pulse (differential line driver)	$\begin{gathered} \hline \text { LA } \\ \text { LAR } \end{gathered}$	$\begin{aligned} & \hline \text { CN1-4 } \\ & \text { CN1-5 } \end{aligned}$	These devices output pulses of encoder output pulse set in [Pr. PA15] in the differential line driver type. In CCW rotation of the servo motor, the encoder B-phase pulse lags the encoder A-phase pulse by a phase angle of $\pi / 2$. The relation between rotation direction and phase difference of the Aphase and B-phase pulses can be changed with [Pr. PC19].	DO-2	\bigcirc	O	\bigcirc
Encoder Bphase pulse (differential line driver)	$\begin{gathered} \hline \text { LB } \\ \text { LBR } \end{gathered}$	$\begin{aligned} & \hline \text { CN1-6 } \\ & \text { CN1-7 } \end{aligned}$					
Encoder Zphase pulse (differential line driver)	$\begin{gathered} \mathrm{LZ} \\ \mathrm{LZR} \end{gathered}$	$\begin{aligned} & \hline \text { CN1-8 } \\ & \text { CN1-9 } \end{aligned}$	The encoder zero-point signal is outputted in the differential line driver type. One pulse is outputted per servo motor revolution. This turns on when the zero-point position is reached. (negative logic) The minimum pulse width is about $400 \mu \mathrm{~s}$. For home position return using this pulse, set the creep speed to $100 \mathrm{r} / \mathrm{min}$ or less.	DO-2	0	O	0
Encoder Zphase pulse (open-collector)	OP	CN1-33	The encoder zero-point signal is outputted in the open-collector type.	DO-2	0	O	0
Analog monitor 1	MO1	CN1-26	This is used to output the data set in [Pr. PC14] to between MO1 and LG in terms of voltage. Output voltage: $5 \mathrm{~V} \pm 4 \mathrm{~V}$ Resolution: 10 bits or equivalent	Analog output	\bigcirc	O	\bigcirc
Analog monitor 2	MO2	CN1-29	This signal outputs the data set in [Pr. PC15] to between MO2 and LG in terms of voltage. Output voltage: $5 \mathrm{~V} \pm 4 \mathrm{~V}$ Resolution: 10 bits or equivalent	Analog output	O	O	\bigcirc

(4) Communication
(a) MR-J4-_A_-RJ 100 W or more

			Function and application	$\begin{array}{\|c\|} \hline \text { I/O } \\ \hline \text { division } \end{array}$	Control mode		
Device	Symbol	Connector pin No.				J	®
$\begin{aligned} & \text { RS-422/RS-485 } \\ & \text { I/F } \end{aligned}$	$\begin{aligned} & \hline \text { SDP } \\ & \text { SDN } \\ & \text { RDP } \\ & \text { RDN } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CN3-5 } \\ & \text { CN3-4 } \\ & \text { CN3-3 } \\ & \text { CN3-6 } \end{aligned}$	These are terminals for RS-422/RS-485 communication.		0	O	O

(b) MR-J4-03A6-RJ

Device	Symbol	Connector pin No.	Function and application	$\begin{array}{\|c\|} \hline \text { I/O } \\ \text { division } \end{array}$	Control mode		
					C	C	P
RS-422 I/F	SDP	CN1-13	These are terminals for RS-422 communication.		\bigcirc	O	\bigcirc
	SDN	CN1-14					
	RDP	CN1-39					
	RDN	CN1-40		,			
	TRE	CN1-31		V			

2.4 Analog override

POINT

The override function has two types. One is analog override by using analog voltage input and another is digital override by using parameter settings.

- Target method of analog override: Point table method/Program method
- Target method of digital override: Indexer method

OOVR (Analog override selection) is for the analog override. The digital override does not depend on OVR (Analog override selection).

- Refer to [Pr. PT38], [Pr. PT42], and [Pr. PT43] for the digital override.
-When using the analog override in the point table method or program method, enable OVR (Analog override selection).
The following shows functions whether usable or not with the analog override.
(1) Analog override usable
- Automatic operation mode (point table method/program method)
- JOG operation in the manual operation mode
- Automatic positioning to home position function in the point table method
(2) Analog override unusable
- Manual pulse generator operation in the manual operation mode
- Home position return mode
- Test operation mode using MR Configurator2 (positioning operation/JOG operation)

You can change the servo motor speed by using VC (Analog override). The following table shows signals and parameters related to the analog override.

Item	Name	Remark
Analog input signal	VC (Analog override)	
Contact input signal	OVR (Analog override selection)	Turning on OVR will enable VC (Analog override) setting value.
Parameter	[Pr. PC37 Analog override offset]	-9999 to 9999 [mV]

(1) VC (Analog override)

You can continuously set changed values from outside by applying voltage (-10 V to +10 V) to VC (Analog override). The following shows percentage of the actual speed to input voltage and set speed.

VC (Analog override voltage) applied voltage

Note. This diagram shows sink input interface.

2. SIGNALS AND WIRING

(2) OVR (Analog override selection)

Select enabled/disabled of VC (Analog override).

Select a changed value using OVR (Analog override selection).

(Note) External input signal	Speed change value
0	No change
1	Setting of VC (Analog override) is enabled.

Note. 0: Off
1: On
(3) Analog override offset ([Pr. PC37])

You can set an offset voltage to the input voltage of VC (Analog override) with [Pr. PC37]. The setting value is from -9999 to $+9999[\mathrm{mV}]$.

2. SIGNALS AND WIRING

2.5 Internal connection diagram

POINT
For details of interface and source I/O interface, refer to section 3.9 of "MR-J4-A_(-RJ) Servo Amplifier Instruction Manual".
-For the CN8 connector, refer to section 13.3 .1 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

The following shows an example of internal connection diagram of the point table method.
(1) MR-J4-_A_-RJ 100 W or more

2. SIGNALS AND WIRING

Note 1. Output signals are not assigned by default. Assign the output signals with [Pr. PD47] as necessary.
2. Refer to section 9.1 for the connection of manual pulse generator
3. This diagram shows sink I/O interface. For source I/O interface, refer to section 3.9.3 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
4. The illustration of the 24 V DC power supply is divided between input signal and output signal for convenience. However, they can be configured by one.
5. For the connection with external encoders, refer to table 1.1 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
(2) MR-J4-03A6-RJ

2. SIGNALS AND WIRING

Note 1. Refer to section 9.1 for the connection of a manual pulse generator.
2. This diagram shows sink I/O interface. For source I/O interface, refer to section 3.9.3 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
3. The illustration of the 24 V DC power supply is divided between input signal and output signal for convenience. However, they can be configured by one. For 24 V DC power for I/O signal, use power other than 24 V DC power of servo amplifier control circuit power supply.
4. To use the RS-422 communication function, connect between TRE and RDN of the final axis servo amplifier. (Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" section 18.9.)

2.6 Power-on sequence

POINT

The voltage of analog monitor output, output signal, etc. may be unstable at power-on.

2.6.1 MR-J4-_A_-RJ 100 W or more

(1) Power-on procedure

1) Always use a magnetic contactor for the main circuit power supply wiring (L1, L2, and L3) as shown in section 3.1 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". Configure an external sequence to switch off the magnetic contactor as soon as an alarm occurs.
2) Switch on the control circuit power supply (L11 and L21) simultaneously with the main circuit power supply or before switching on the main circuit power supply. If the main circuit power supply is not on, the display shows the corresponding warning. However, by switching on the main circuit power supply, the warning disappears and the servo amplifier will operate properly.
3) The servo amplifier receives the SON (Servo-on) 4 s to 5 s after the main circuit power supply is switched on. Therefore, when SON (Servo-on) is switched on simultaneously with the main circuit power supply, the base circuit will switch on in about 4 s to 5 s , and the RD (Ready) will switch on in further about 5 ms , making the servo amplifier ready to operate. (Refer to (2) of this section.)
4) When RES (Reset) is switched on, the base circuit is shut off and the servo motor shaft coasts.
(2) Timing chart

Note. The time will be longer during the magnetic pole detection of a linear servo motor and direct drive motor.

2. SIGNALS AND WIRING

2.6.2 MR-J4-03A6-RJ

(1) Power-on procedure

1) When wiring the power supply, always use a circuit protector for the power supply (24/PM). Configure up an external sequence so that the relay connected to PM turns off when an alarm occurs.
2) Switch on the control circuit power supply (24/0) simultaneously with the main circuit power supply (PM/0) or before switching on the main circuit power supply. If the main circuit power supply is not on, the display shows the corresponding warning. However, by switching on the main circuit power supply, the warning disappears and the servo amplifier will operate properly.
3) The servo amplifier receives the SON (Servo-on) within 4 s to 5 s after the main circuit power supply is switched on. Therefore, when SON (Servo-on) is switched on simultaneously with the main circuit power supply, the base circuit will switch on in about 4 s to 5 s , and the RD (Ready) will switch on in further about 5 ms , making the servo amplifier ready to operate. (Refer to (2) of this section.)
4) When RES (Reset) is switched on, the base circuit is shut off and the servo motor shaft coasts.
(2) Timing chart

3. DISPLAY AND OPERATION SECTIONS

3. DISPLAY AND OPERATION SECTIONS

The following items are the same as MR-J4-_A_-RJ servo amplifiers. For the details of the items, refer to each chapter/section (in "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual") indicated in the detailed explanation field.

Item	Detailed explanation	
	MR-J4-_A_-RJ 100 W or more	MR-J4-03A6-RJ
Test operation mode	Section 4.5.9	Section 18.5.10

3.1 MR-J4-_A_-RJ 100 W or more

3.1.1 Display sequence

Press the "MODE" button once to shift to the next display mode. Refer to section 3.1.2 and later for the description of the corresponding display mode.

Display mode transition	Initial screen	Function	Reference
Status display		Servo status display. For the point table and program, is displayed at power-on. For indexer, \square will be displayed. (Note)	Section 3.1.2
One-touch tuning		One-touch tuning Select this when performing the one-touch tuning.	MR-J4-_A (-RJ) Servo Amplifier Instruction Manual section 6.2
Diagnosis	$-\infty-1=1$	Sequence display, drive recorder enabled/disabled display, external I/O signal display, output signal (DO) forced output, test operation, software version display, VC automatic offset, servo motor series ID display, servo motor type ID display, servo motor encoder ID display, teaching function	Section 3.1.3
Alarm		Current alarm display, alarm history display and parameter error No./point table error No. display	Section 3.1.4
Point table setting	± 101010	Display and setting of point table data. The screen is displayed only in the point table method, and is not displayed in other control mode.	Section 3.1.5
		Display and setting of basic setting parameters.	Section 3.1.6
Gain/filter parameters	± 1010	Display and setting of gain/filter parameters.	
Extension setting parameters	± 10101	Display and setting of extension setting parameters.	
I/O setting parameters	1 1	Display and setting of I/O setting parameters.	
Extension setting 2 parameters	± 15	Display and setting of extension setting 2 parameters.	
Extension setting 3 parameters	± 101	Display and setting of extension setting 3 parameters.	
Linear/DD motor setting parameter	± 1010	Display and setting of linear/DD motor setting parameters.	
Option setting parameters	± 1 1	Display and setting of option setting parameters.	
Positioning control parameters	± 101	Display and setting of positioning control parameters.	

Note. When the axis name is set to the servo amplifier using MR Configurator2, the axis name is displayed and the servo status is then displayed.

3. DISPLAY AND OPERATION SECTIONS

3.1.2 Status display

The servo status during operation is shown on the 5 -digit, 7 -segment LED display. Press the "UP" or "DOWN" button to change display data as desired. When the required data is selected, the corresponding symbol is displayed. Press the "SET" button to display that data. At only power-on, however, data appears after the symbol of the status display selected in [Pr. PC36] has been shown for 2 s .
(1) Display transition

After selecting the status display mode with the "MODE" button, pressing the "UP" or "DOWN" button changes the display as shown below.
(a) Standard control mode (rotary servo motor)/DD motor control mode

(b) Fully closed loop control mode

Note 1. The displays in the frames are from the cumulative feedback pulses of positioning mode to unit total power consumption 2 (increment of 100 kWh) with some displays omitted.
2. The displays in the frames are from the current position of positioning mode to override level with some displays omitted.

3. DISPLAY AND OPERATION SECTIONS

(c) Linear servo motor control mode

Note 1. The displays in the frames are from the cumulative feedback pulses of positioning mode to unit total power consumption 2 (increment of 100 kWh) with some displays omitted.
2. The displays in the frames are from the current position of positioning mode to override level with some displays omitted.
(2) Status display list

The following table lists the servo statuses that may be shown.

3. DISPLAY AND OPERATION SECTIONS

Status display	Symbol	Unit	Description	Control mode (Note 1)			Operation mode (Note 3)			
				O 0 O 0	Ј	か		言	$\stackrel{\text { ¢ }}{ }$	-
Settling time	ST	ms	Settling time is displayed. When it exceeds 1000 ms , " 1000 " will be displayed.	O	O	O	O	O	O	O
Oscillation detection frequency	oF	Hz	Frequency at the time of oscillation detection is displayed.	O	O	O	O	O	O	O
Number of tough drive operations	Td	times	The number of tough drive functions activated is displayed.	O	O	O	O	O	O	O
Unit power consumption 1 (increment of 1 W)	PC1	W	Unit power consumption is displayed by increment of 1 W . Positive value indicates power running, and negative value indicates regeneration. The values in excess of ± 99999 can be counted. However, the counter shows only the lower five digits of the actual value since the servo amplifier display is five digits.	O	O	O	O	O	O	O
Unit power consumption 2 (increment of 1 kW)	PC2	kW	Unit power consumption is displayed by increment of 1 kW . Positive value indicates power running, and negative value indicates regeneration.	O	O	O	O	O	O	O
Unit total power consumption 1 (increment of 1 Wh)	TPC1	Wh	Unit total power consumption is displayed by increment of 1 Wh . Positive value is cumulated during power running and negative value during regeneration. The values in excess of ± 99999 can be counted. However, the counter shows only the lower five digits of the actual value since the servo amplifier display is five digits.	O	O	O	O	O	O	O
Unit total power consumption 2 (increment of 100 kWh)	TPC2	100 kWh	Unit total power consumption is displayed by increment of 100 kWh . Positive value is cumulated during power running and negative value during regeneration.	O	O	O	O	O	O	O
Load-side encoder Cumulative feedback pulses	FC	pulse	Feedback pulses from the load-side encoder are counted and displayed. The values in excess of ± 99999 can be counted. However, the counter shows only the lower five digits of the actual value since the servo amplifier display is five digits. Press the "SET" button to reset the display value to zero. The value of minus is indicated by the lit decimal points in the upper four digits.	O	O	\checkmark	\checkmark	O	V	
Load-side encoder Droop pulses	FE	pulse	Droop pulses of the deviation counter between a load-side encoder and a command are displayed. When the count exceeds ± 99999, it starts from 0 . Negative value is indicated by the lit decimal points in the upper four digits. The display shows the average droop pulse value of 128 -time sampling at the rate of 444 [$\mu \mathrm{s}$].	O	O	$\$ & $\$ & O & \checkmark				
Load-side encoder information 1 (1 pulse unit)	FCy1	pulse	The Z-phase counter of a load-side encoder is displayed in the encoder pulse unit. For an incremental linear encoder, the Z-phase counter is displayed. The value is counted up from 0 based on the home position (reference mark). For an absolute position linear encoder, the encoder absolute position is displayed. When the count exceeds 99999, it starts from 0.	O	O	$\$ & $\$ & O & $\$ & \hline Load-side encoder information 1 (100000 pulses unit) & FCy2 & 100000 pulses &The Z-phase counter of a load-side encoder is displayed by increments of 100000 pulses. For an incremental linear encoder, the Z-phase counter is displayed. The value is counted up from 0 based on the home position (reference mark). For an absolute position linear encoder, the encoder absolute position is displayed. When the count exceeds 99999, it starts from 0.& O & O & $\$ & $\$ & O & $\$ & \hline Load-side encoder information 2 & FL5 & rev &When an incremental linear encoder is used as the load-side encoder, the display shows 0 . When an absolute position linear encoder is used as the loadside encoder, the display shows 0 . When a rotary encoder is used as the load-side encoder, the display shows the multi-revolution counter value of the encoder. & O & O & $\$ & $\$ & O & \checkmark	$\overline{ }$			
Z-phase counter low	FCy1	pulse	The Z-phase counter is displayed in the encoder pulse unit. For an incremental linear encoder, the Z-phase counter is displayed. The value is counted up from 0 based on the home position (reference mark). For an absolute position linear encoder, the encoder absolute position is displayed. When the count exceeds 99999, it starts from 0.	O	O	0	$\$ & \checkmark	\bigcirc	\rangle	

3．DISPLAY AND OPERATION SECTIONS

Status display	Symbol	Unit	Description	Control mode （Note 1）			Operation mode（Note 3）									
				俞	נ	か		$\overline{\bar{亏}}$	$\stackrel{\text { ¢ }}{\square}$	－						
Z－phase counter high	FCy2	100000 pulses	The Z－phase counter is displayed by increments of 100000 pulses． For an incremental linear encoder，the Z－phase counter is displayed．The value is counted up from 0 based on the home position（reference mark）．For an absolute position linear encoder，the encoder absolute position is displayed． When the count exceeds 99999，it starts from 0.	O	O	O	\checkmark	$\$ & O & $\$ \hline Electrical angle low & ECy1 & pulse & The servo motor electrical angle is displayed． & 0 & 0 & & & & 0 & \hline Electrical angle high & ECy2 & 100000 pulses & The servo motor electrical angle is displayed by increments of 100000 pulses． & O & O & & & & O & \hline Current position & PoS & $\begin{gathered} 10^{\text {STM } \mu \mathrm{m}} \\ 10^{\text {(STM }-4)} \text { inch } \\ 10^{-3} \text { degree } \\ \text { pulse } \\ \text { (Note 2) } \end{gathered}$ &When＂＿＿ 0 ＿＂（positioning display）is set in［Pr．PT26］，the current position is displayed as machine home position is 0 ． When＂＿＿ 1 ＿＂（roll feed display）is set in［Pr．PT26］，the actual current position is displayed as start position is 0 ． The values in excess of ± 99999 can be counted．However，the counter shows only the lower five digits of the actual value since the servo amplifier display is five digits．& O & O & & O & O & O & O \hline Command position & CPoS & $\begin{gathered} 10^{\text {STM } \mu \mathrm{m}} \\ 10^{\text {(STM-4) } \text { inch }} \\ 10^{-3} \text { degree } \\ \text { pulse } \\ \text { (Note 2) } \end{gathered}$ &When＂＿＿ 0 ＿＂（positioning display）is set in［Pr．PT26］，the command current position is displayed as machine home position is 0 ． When＂＿＿ 1 ＿＂（roll feed display）is set in［Pr．PT26］，turning on the start signal starts counting from 0 and a command current position to the target position is displayed in the automatic mode． The command positions of the selected point table are displayed at a stop．At the manual mode，the command positions of the selected point table are displayed． The values in excess of ± 99999 can be counted．However，the counter shows only the lower five digits of the actual value since the servo amplifier display is five digits． & O & O & & O & O & O & O \hline Command remaining distance & rn & $10^{\text {STM } \mu m}$$10^{\text {（STM }-4)}$ inch10^{-3} degreepulse（Note2）	Indicates the remaining distance to the command position of the currently selected point table，program and station． The values in excess of ± 99999 can be counted．However，the counter shows only the lower five digits of the actual value since the servo amplifier display is five digits．	O	O	O	O	O	O	O
Point table No．／program No．／command station position	Pno		For the point table method and program method，the point table and program No．currently being executed are displayed．The selected number is displayed during a temporary stop or manual operation． For the indexer method，the command next station position is displayed．	O	O	O	O	O	O	O						
Step No．	Sno		The step No．of the program currently being executed is displayed．At a stop， 0 is displayed．		O		O	O	O	O						
Analog override voltage	oru	V	The analog override voltage is displayed．	\bigcirc	0		\bigcirc	0	\bigcirc	0						
Override level	or	\％	The setting value of the override is displayed． When the override is disabled， 100% is displayed．	O	O	O	O	O	O	O						
Cam axis one cycle current value	CCyC	$\begin{gathered} 10^{\text {STM }} \mu \mathrm{m} \\ 10^{\text {STM-4) }} \text { inch } \\ 10^{-3} \text { degree } \\ \text { pulse } \\ \text { (Note 4) } \end{gathered}$	The current position in one cycle of CAM axis is displayed with the range of＂ 0 to（cam axis one cycle length－1）＂，the cam axis one cycle current value which is calculated from the travel distance inputted to the cam axis．When the simple cam function is disabled， 0 is always displayed． The values in excess of ± 99999 can be counted．However，the counter shows only the lower five digits of the actual value since the servo amplifier display is five digits． Refer to section 12．1．8 for detecting point．	O	O	1	O	O	O	O						
Cam standard position	CbAS	$\begin{gathered} 10^{\text {STM }} \mu \mathrm{m} \\ 10^{\text {STM }-4)} \text { inch } \\ 10^{-3} \text { degree } \\ \text { pulse } \\ \text { (Note 3) } \end{gathered}$	A feed current value which is the standard position of the cam operation is displayed．When the simple cam function is disabled， 0 is always displayed． The values in excess of ± 99999 can be counted．However，the counter shows only the lower five digits of the actual value since the servo amplifier display is five digits． Refer to section 12．1．8 for detecting point．	O	O	\(
)	O	O	O	O												

3. DISPLAY AND OPERATION SECTIONS

Status display	Symbol	Unit	Description				Operation mode (Note 3)			
				1 0 0 0 0	Ј	か		$\overline{\bar{L}}$	$\stackrel{\text { ¢ }}{ }$	-
Cam axis feed current value	CCMd	$\begin{gathered} 10^{\text {STM }} \mu \mathrm{m} \\ 10^{\text {STM-4) }} \text { inch } \\ 10^{-3} \text { degree } \\ \text { pulse } \\ \text { (Note 3) } \end{gathered}$	A feed current value during the cam axis control is displayed. When the simple cam function is disabled, 0 is always displayed. The values in excess of ± 99999 can be counted. However, the counter shows only the lower five digits of the actual value since the servo amplifier display is five digits. Refer to section 12.1.8 for detecting point.	O	O	$\$ & O & O & O & O \hline Cam No. in execution & Cno & &Cam No. in execution is displayed. When the simple cam function is disabled, 0 is always displayed. Refer to section 12.1.8 for detecting point. & O & O & \checkmark	O	O	O	O
Cam stroke amount in execution	CSTK	$\begin{gathered} 10^{\text {STM }} \mu \mathrm{m} \\ 10^{\text {STM }-4)} \text { inch } \\ 10^{-3} \text { degree } \\ \text { (Note } 3 \text {) } \end{gathered}$	Cam stroke amount in execution is displayed. When the simple cam function is disabled, 0 is always displayed. The values in excess of ± 99999 can be counted. However, the counter shows only the lower five digits of the actual value since the servo amplifier display is five digits. Refer to section 12.1.8 for detecting point.	O	O	\checkmark	O	O	O	O
Main axis current value	MCMd	$\begin{gathered} 10^{\text {STM }} \mu \mathrm{m} \\ 10^{\text {STM-4) }} \text { inch } \\ 10^{-3} \text { degree } \\ (\text { Note } 4) \end{gathered}$	A current value of the input axis (synchronous encoder axis or servo input axis) is displayed. Unit is increment of input axis position. When the simple cam function is disabled, 0 is always displayed. The values in excess of ± 99999 can be counted. However, the counter shows only the lower five digits of the actual value since the servo amplifier display is five digits. Refer to section 12.1.8 for detecting point.	O	O	\(
)	O	O	O	0						
Main axis one cycle current value	MCyC	$\begin{gathered} 10^{\text {STM }} \mu \mathrm{m} \\ 10^{\text {STM }-4)} \text { inch } \\ 10^{-3} \text { degree } \\ \text { pulse } \\ \text { (Note 4) } \end{gathered}$	The input travel amount of the input axis is displayed within the range of " 0 and (cam axis one cycle length setting - 1)". Unit is an increment of cam axis one cycle. When the simple cam function is disabled, 0 is always displayed. The values in excess of ± 99999 can be counted. However, the counter shows only the lower five digits of the actual value since the servo amplifier display is five digits. Refer to section 12.1.8 for detecting point.	O	O	\(
)	O	O	O	O						

Note 1. CP: Positioning mode (point table method)
BCD: Positioning mode (point table method in the BCD input positioning operation)
This method is available only when the MR-D01 unit is connected. Refer to chapter 12 for details.
CL: Positioning mode (program method)
PS: Positioning mode (indexer method)
2. The unit can be selected from $\mu \mathrm{m} / \mathrm{inch} /$ degree/pulse with [Pr. PT01].
3. Standard: Standard (semi closed loop system) use of the rotary servo motor

Full.: Fully closed loop system use of the rotary servo motor
Lin.: Linear servo motor use
DD: Direct drive (DD) motor use
4. The unit can be changed with "Cam control data No. 14" to $\mu \mathrm{m} / \mathrm{inch} /$ degree/pulse.

3. DISPLAY AND OPERATION SECTIONS

(3) Changing the status display screen

The status display item of the servo amplifier display shown at power-on can be changed by changing [Pr. PC36] settings. The item displayed in the initial status changes with the control mode as follows.

Control mode	Status display
Position	Cumulative feedback pulses
Position/speed	Cumulative feedback pulses/servo motor speed
Speed	Servo motor speed
Speed/torque	Servo motor speed/analog torque command voltage
Torque	Analog torque command voltage
Torque/position	Current position pulses
Positioning (point table method/program method)	Cumulative feedback pulses
Positioning (indexer method)	

3. DISPLAY AND OPERATION SECTIONS

3.1.3 Diagnostic mode

The display can show diagnosis contents. Press the "UP" or "DOWN" button to change display data as desired.
(1) Display transition

(2) Diagnosis display list
Sequence

3. DISPLAY AND OPERATION SECTIONS

Name	Display	Description
Software version - Lower		Indicates the version of the software.
Software version - Upper		Indicates the system number of the software.
Automatic VC offset (Note)		If offset voltages in the analog circuits inside and outside the servo amplifier cause the servo motor setting speed not to be the designated value at VC or OVC of 0 V , a zero-adjustment of offset voltages will be automatically performed. When using the VC automatic offset, enable it in the following procedures. 1) Press the "SET" once. 2) Set the number in the first digit to 1 with "UP"/"DOWN". 3) Press the "SET". This function cannot be used if the input voltage of VC or OVC is -0.4 V or less, or +0.4 V or more. When the VC automatic offset is enabled, the following automatic offset voltage is applied according to the setting of [Pr. Po11].
		Pr. Po11 Offset voltage to be automatically adjusted
		$__{--} 0_{-} \quad$Offset voltage set with [Pr. PC37] (Servo amplifier side)
		$-1^{1}-$ Offset voltage set with [Pr. Po21] (MR-D01 side)
Servo motor series ID	(1)	Push the "SET" button to show the series ID of the servo motor currently connected. For indication details, refer to appendix 1 of "Servo Motor Instruction Manual (Vol. 3)".
Servo motor type ID		Push the "SET" button to show the type ID of the servo motor currently connected. For indication details, refer to appendix 1 of "Servo Motor Instruction Manual (Vol. 3)".
Servo motor encoder ID	101	Push the "SET" button to show the encoder ID of the servo motor currently connected. For indication details, refer to appendix 1 of "Servo Motor Instruction Manual (Vol. 3)".
For manufacturer adjustment	10	This is for manufacturer adjustment.
For manufacturer adjustment		This is for manufacturer adjustment.
Teaching function	Refer to section 3.1.10.	After an operation travels to a target position (MEND (Travel completion) is turned on) with a JOG operation or manual pulse generator operation, pushing the "SET" button of the operation part or turning on TCH (Teach) will import position data. This function is available only in the point table method. For other control mode, the display remains the same.

Note. Even if VC automatic offset is performed and 0 V is inputted, the speed may not completely be the set value.

3. DISPLAY AND OPERATION SECTIONS

3.1.4 Alarm mode

The current alarm, past alarm history and parameter error are displayed. The lower 2 digits on the display indicate the alarm number that has occurred or the parameter number in error.

[^0]
3. DISPLAY AND OPERATION SECTIONS

The following shows the functions that can be used at occurrence of an alarm.
(1) Any mode screen displays the current alarm.
(2) Even during alarm occurrence, the other screen can be viewed by pressing the button in the operation area. At this time, the decimal point in the fourth digit remains flickering.
(3) For any alarm, remove its cause and clear it in any of the following methods. (Refer to chapter 8 for the alarms that can be cleared.))
(a) Switch power off, then on.
(b) Push the "SET" button on the current alarm screen.
(c) Turn on RES (Reset).
(4) Use [Pr. PC18] to clear the alarm history.
(5) Push "UP" or "DOWN" to move to the next history.

3. DISPLAY AND OPERATION SECTIONS

3.1.5 Point table setting

You can set the target position, servo motor speed, acceleration time constant, deceleration time constant, dwell, sub function and M code.
(1) Display transition

3. DISPLAY AND OPERATION SECTIONS

(2) Setting list

The following table indicates the point table settings that may be displayed.

Status display	Symbol	Unit	Description	Indication range
Point table No.	Po001		Specify the point table to set the target position, servo motor speed, acceleration time constant, deceleration time constant, dwell, sub function and M code.	1 to 255
Target position	PoS	$\begin{gathered} 10^{\text {STM }} \mu \mathrm{m} \\ 10^{(\text {STM-4) }} \text { inch } \\ 10^{-3} \text { degree } \\ \text { pulse } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Set the travel distance.	$\begin{gathered} -999999 \\ \text { to } \\ 999999 \end{gathered}$
Servo motor speed	SPd	$\mathrm{r} / \mathrm{min}$ mm/s (Note 2)	Set the command speed of the servo motor for execution of positioning. The setting value must be within the permissible speed of the servo motor used. If a value equal to or larger than the permissible speed is set, the value is clamped at the permissible speed.	0 to Permissible speed
Acceleration time constant	STA	ms	Set a time until the servo motor rotates at the rated speed.	0 to 20000
Deceleration time constant	STb	ms	Set a time from when the servo motor rotates at the rated speed until when the motor stops.	0 to 20000
Dwell	TLn	ms	This function is enabled when you select the point table by input signal. To make the dwell invalid, set "0" or "2" to the sub function. To perform varying-speed operation, set "1", " 3 ", " 8 ", or " 9 " to the sub function and 0 to the dwell. When the dwell is set, the position command of the selected point table is completed. After the set dwell has elapsed, start the position command of the next point table.	0 to 20000
Sub function	H		This function is enabled when you select the point table by input signal. (1) When using this point table under the absolute value command method 0 : Automatic operation is performed in accordance with a single point table selected. 1: Executes automatic continuous operation without stopping for the next point table. 8: Automatic continuous operation is performed to the point table selected at start-up. 9: Automatic continuous operation is performed to point table No. 1. (2) When using this point table under the incremental value command method 2: Automatic operation is performed in accordance with a single point table selected. 3: Executes automatic continuous operation without stopping for the next point table. 10: Automatic continuous operation is performed to the point table selected at start-up. 11: Automatic continuous operation is performed to point table No. 1. When a different rotation direction is set, smoothing zero (command output) is confirmed and then the rotation direction is reversed. When "1" or " 3 " is set to the point table No. 255, [AL. 61] will occur at the time of point table execution.	0 to 3, 8 to 11
M code	MCd		This is the code output at the completion of positioning. Outputs the first digit and the second digit of the M code in 4-bit binary respectively.	0 to 99

Note 1. The unit can be selected from $\mu \mathrm{m} / \mathrm{inch} /$ /degree/pulse with [Pr. PT01].
2. The unit will be " mm / s " for linear control mode.

3. DISPLAY AND OPERATION SECTIONS

(3) Operation method

POINT

After changing and defining the setting values of the specified point table, the defined setting values of the point table are displayed. After defining the values, pressing the "MODE" button for 2 s or more to discard the changed setting values, and the previous setting values are displayed. Keep pressing the "UP" or "DOWN" button to continuously change the most significant digit of the setting values.
(a) Setting of 5 or less digits

The following example is the operation method at power-on to set " 1 " to the sub function of the point table No. 1.

Press the "UP" "DOWN" button to switch to other item of the same point table No.
Press the "MODE" button to switch to the next point table No.

3. DISPLAY AND OPERATION SECTIONS

(b) Setting of 6 or more digits

The following example is the operation method to change the position data of the point table No. 1 to "123456".

3. DISPLAY AND OPERATION SECTIONS

3.1.6 Parameter mode

(1) Parameter mode transition

After selecting the corresponding parameter mode with the "MODE" button, pressing the "UP" or "DOWN" button changes the display as shown below.

(2) Operation method
(a) Parameters of 5 or less digits

The following example shows the operation procedure performed after power-on to change the control mode to the positioning mode (point table method) with [Pr. PA01 Operation mode]. Press "MODE" to switch to the basic setting parameter screen.

To shift to the next parameter, press the "UP" or "DOWN" button.
When changing the [Pr. PA01] setting, change its setting value, then switch power off once and switch it on again to enable the new value.

3. DISPLAY AND OPERATION SECTIONS

(b) Parameters of 6 or more digits

The following example gives the operation procedure to change the electronic gear numerator to "123456" with [Pr. PA06 Electronic gear numerator].

3. DISPLAY AND OPERATION SECTIONS

3.1.7 External I/O signal display

POINT

The I/O signal settings can be changed using the I/O setting parameters [Pr. PD04] to [Pr. PD28].

The on/off states of the digital I/O signals connected to the servo amplifier can be confirmed.
(1) Operation

The display screen at power-on. Using the "MODE" button, display the diagnostic screen.

(2) Display definition

The 7-segment LED segments and CN1 connector pins correspond as shown below.

Note 1. This pin is available with servo amplifiers having software version B3 or later, and manufactured in November 2014 or later.
2. This pin is available with servo amplifiers having software version B7 or later, and manufactured in January 2015 or later.

The LED segment corresponding to the pin is lit to indicate on, and is extinguished to indicate off. For each pin signal in control modes, refer to section 2.2 (1).

3. DISPLAY AND OPERATION SECTIONS

3.1.8 Output signal (DO) forced output

POINT

When the servo system is used in a vertical lift application, turning on MBR (Electromagnetic brake interlock) by the DO forced output after assigning it to connector CN1 will release the electromagnetic brake, causing a drop. Take drop preventive measures on the machine side.

Output signals can be switched on/off forcibly independently of the servo status. This function can be used for output signal wiring check, etc. This operation must be performed in the servo off state by turning off SON (Servo-on).

The display screen at power-on. Using the "MODE" button, display the diagnostic screen.

3. DISPLAY AND OPERATION SECTIONS

3.1.9 Single-Step feed

\triangle CAUTION
 The test operation mode is designed for checking servo operation. Do not use it for actual operation.
 If the servo motor operates unexpectedly, use EM2 (Forced stop 2) to stop it.

\square
POINT
-MR Configurator2 is required to perform single-step feed.
Test operation cannot be performed if SON (Servo-on) is not turned off.

The positioning operation can be performed in accordance with the point table No. or program No. set by MR Configurator2.
Select the test operation/single-step feed by the menu of MR Configurator2. When the single-step feed window is displayed, input the following items and operate.

Point table operation

Program operation
(1) Point table No. or program No. setting

Input a point table No. into the input box (a) "Point table No.", or a program No. into the input box (b) "Program No.".
(2) Forward/reverse the servo motor

Click the "Operation Start" button (c) to rotate the servo motor.
(3) Pause the servo motor

Click the "Pause" button (d) to temporarily stop the servo motor.
While the servo motor is temporarily stopped, click the "Operation Start" button (c) to restart the rotation by the amount of the remaining travel distance.
While the servo motor is temporarily stopped, click the "Stop" button (e) to clear the remaining travel distance.
(4) Stop the servo motor

Click the "Stop" button (e) to stop the servo motor. At this time, the remaining travel distance is cleared.
Click the "Operation Start" (c) button to restart the rotation.

3. DISPLAY AND OPERATION SECTIONS

(5) Forced stop of the servo motor software

Click the "Forced Stop" (f) button to make an instantaneous stop. When the "Forced Stop" button is enabled, "Operation Start" button cannot be used. Click the "Forced Stop" button again to enable the "Operation Start" button.
(6) Switch to the normal operation mode

Before switching from the test operation mode to the normal operation mode, turn off the servo amplifier.

3. DISPLAY AND OPERATION SECTIONS

3.1.10 Teaching function

After an operation travels to a target position (MEND (Travel completion) is turned on) with a JOG operation or manual pulse generator operation, pushing the "SET" button of the operation part or turning on TCH (Teach) will import position data. This function is available only in the point table method. For other control mode, the display remains the same.
(1) Teaching preparation

Teaching setting initial screen
Press the "SET" button for approximately 2 s to switch to the teaching setting mode.

When the lower three digits flicker, press the "UP" or "DOWN" button to select the point table.

When the lower three digits flicker, press the "SET" button to complete the teaching setting preparation. The upper two digits on the display will flicker on completion of proper preparation
(2) Position data setting method

After an operation travels to a target position (MEND (Travel completion) is turned on) with a JOG operation or manual pulse generator operation, pushing the "SET" button of the operation part or turning on TCH (Teach) will set the positioning address as position data.

When the upper two digits flicker, the current position is written to the selected point table by pressing the "SET" button.

When the upper two digits or the lower two digits flicker, the display returns to the teaching setting initial screen by pressing the "MODE" button.
The following shows the conditions for when the teaching function operates.
(a) When the "positioning command method" of [Pr. PT01] is set to absolute value command method (_ _- 0)
(b) Home position return completion (ZP (Home position return completion) is turned on)
(c) While the servo motor is stopped (command output $=0$, MEND (Travel completion) is turned on)

3. DISPLAY AND OPERATION SECTIONS

3.2 MR-J4-03A6-RJ

3.2.1 Display flowchart

Press the "MODE" button once to shift to the next display mode. Refer to section 3.2.2 and later for the description of the corresponding display mode.

Note. When the axis name is set to the servo amplifier using MR Configurator2, the servo status is displayed after the axis name is displayed.

3. DISPLAY AND OPERATION SECTIONS

3.2.2 Status display mode

The servo status during operation is shown on the 3-digit, 7-segment LED display. Press the "UP" or "DOWN" button to change the display data as desired. When a servo status is selected, the corresponding symbol is displayed. Press the "SET" button to display its data. However, only when the power is turned on, the data will be displayed after the status symbol selected with [Pr. PC36] is displayed for 2 s .
(1) Display transition

After selecting the status display mode with the "MODE" button, pressing the "UP" or "DOWN" button changes the display as follows:

3. DISPLAY AND OPERATION SECTIONS

(2) Status display list

The following table lists the servo statuses that may be shown.

Status display	Symbol	Unit	Description	Control mode (Note 1)		
				C	C	P
Cumulative feedback pulses (1 pulse unit)	CL	pulse	Feedback pulses from the servo motor encoder are counted and displayed. When the count exceeds ± 999, it starts from 0 . Negative value is indicated by the lit decimal points in the upper two digits. Press the "SET" button to reset the display value to zero. The internal counter subtracts 500000000 when the number exceeds 2000000000. The internal counter adds 500000000 when the number exceeds 2000000000.	O	O	O
Cumulative feedback pulses (1000 pulse unit)	Ch	1000 pulses		O	O	O
Servo motor speed ($10 \mathrm{r} / \mathrm{min}$ unit)	r1	$10 \mathrm{r} / \mathrm{min}$	The servo motor speed is displayed. Negative value is indicated by the lit decimal points in the upper two digits. Displayed in increments of $10 \mathrm{r} / \mathrm{min}$.	O	O	O
Servo motor speed ($1 \mathrm{r} / \mathrm{min}$ unit)	r	r/min	The servo motor speed is displayed. Negative value is indicated by the lit decimal points in the upper two digits.	O	O	O
Droop pulses (1 pulse unit)	EL	pulse	The number of droop pulses in the deviation counter is displayed. When the count exceeds ± 999, it starts from 0 . The value displayed is not multiplied by the electronic gear (CMX/CDV). Negative value is indicated by the lit decimal points in the upper two digits.	O	O	O
Droop pulses (1000 pulses unit)	Eh	1000 pulses		O	O	O
Cumulative command pulses (1 pulse unit)	PL	pulse	Not used with the positioning mode. "0" is always displayed.			
Cumulative command pulses (1000 pulses unit)	Ph	1000 pulses				
Command pulse frequency (1 kpulse/s unit)	nL	kpulse/s	Not used with the positioning mode. "0" is always displayed.			
Command pulse frequency (1000 kpulses/s unit)	nh	1000 kpulses/s				
Analog speed command voltage Analog speed limit voltage	F	V	Not used with the positioning mode. An applied voltage to the CN1 connector is displayed.			\checkmark
Analog torque command voltage	U	V	Not used with the positioning mode. An applied voltage to the CN1 connector is displayed.			
Analog torque limit voltage			Voltage of TLA (Analog torque limit) is displayed.	O	O	O
Regenerative load ratio	L	\%	The ratio of regenerative power to permissible regenerative power is displayed in \%.	O	O	O
Effective load ratio	J	\%	The continuous effective load current is displayed. The effective value in the past 15 s is displayed, with the rated current being 100 \%.	O	O	O
Peak load ratio	b	\%	The maximum torque generated is displayed. The highest value in the past 15 s is displayed, with the rated torque being 100 \%.	O	O	O
Instantaneous torque	T	\%	The instantaneous torque is displayed. The torque generated is displayed in real time, with the rated torque being 100%.	O	O	O
Position within onerevolution (1 pulse unit)	Cy1	pulse	Position within one revolution is displayed in encoder pulses. When the count exceeds 999, it starts from 0. When the servo motor rotates in the CCW direction, the value is added.	O	O	O
Position within onerevolution (1000 pulses unit)	Cy2	1000 pulses	The within one-revolution position is displayed in 1000 pulse increments of the encoder. When the count exceeds 999, it starts from 0. When the servo motor rotates in the CCW direction, the value is added.	O	O	O
Position within onerevolution (1000000 pulses unit)	Cy3	1000000 pulses	The within one-revolution position is displayed in 1000000 pulse increments of the encoder. When the count exceeds 999, it starts from 0. When the servo motor rotates in the CCW direction, the value is added.	O	O	O
ABS counter (1 rev unit)	LSL	rev	The travel distance from the home position is displayed as multi-revolution	0	0	
ABS counter (1000 rev unit)	LSh	1000 rev	counter value of the absolution position encoder in the absolution position detection system. Negative value is indicated by the lit decimal points in the upper two digits.	\bigcirc	O	

3. DISPLAY AND OPERATION SECTIONS

Status display	Symbol	Unit	Description	Control mode (Note 1)		
				C	C	P
ABS counter (1 rev unit)	LSL	rev	The travel distance from the home position is displayed as load side multirevolution counter value in the absolute position detection system. Negative value is indicated by the lit decimal points in the upper two digits.			0
ABS counter (1000 rev unit)	LSh	1000 rev				O
Load to motor inertia ratio (0.1 times)	dCL	0.1 time	The estimated ratio of the load inertia moment to the servo motor shaft inertia moment is displayed.	\bigcirc	O	\bigcirc
Load to motor inertia ratio (100 times)	dCh	100 times		O	O	O
Bus voltage	Pn	V	The voltage of main circuit converter is displayed. It is displayed rounding off 0.1 V unit.	O	O	O
Encoder inside temperature	ETh	${ }^{\circ} \mathrm{C}$	Inside temperature of encoder detected by the encoder is displayed.	\bigcirc	O	\bigcirc
Settling time	ST	ms	Displays settling time. When it exceeds 999 ms , "999" will be displayed.	\bigcirc	0	\bigcirc
Oscillation detection frequency (1 Hz unit)	oFL	Hz	Frequency at the time of oscillation detection is displayed.	O	O	\bigcirc
Oscillation detection frequency (1 kHz unit)	oFh	kHz		\bigcirc	O	0
The number of tough drive operations (time)	Td1	times	The number of tough drive functions activated is displayed.	\bigcirc	O	\bigcirc
The number of tough drive operations (1000 times)	Td2	1000 times		O	O	O
Unit power consumption 1 (increment of 1 W)	PC1	W	Unit power consumption is displayed by increment of 1 W . Positive value indicate power running, and negative value indicate regeneration. The values in excess of ± 999 can be counted. However, the counter shows only the lower three digits of the actual value since the servo amplifier display is three digits. Negative value is indicated by the lit decimal points in the upper two digits.	O	O	O
Unit power consumption 2 (increment of 1 kW)	PC2	kW	Unit power consumption is displayed by increment of 1 kW . Positive value indicate power running, and negative value indicate regeneration. The values in excess of ± 99 can be counted. However, the counter shows only the lower three digits of the actual value since the servo amplifier display is three digits. Negative value is indicated by the lit decimal points in the upper two digits.	O	O	O
Unit total power consumption 1 (increment of 1 Wh)	TP1	Wh	Unit total power consumption is displayed by increment of 1 Wh . Positive value is cumulated during power running and negative value during regeneration. The values in excess of ± 999 can be counted. However, the counter shows only the lower three digits of the actual value since the servo amplifier display is three digits. Negative value is indicated by the lit decimal points in the upper two digits.	O	O	O
Unit total power consumption 2 (increment of 1 kWh)	TP2	kWh	Unit total power consumption is displayed by increment of 1 kWh . Positive value is cumulated during power running and negative value during regeneration. The values in excess of ± 999 can be counted. However, the counter shows only the lower three digits of the actual value since the servo amplifier display is three digits. Negative value is indicated by the lit decimal points in the upper two digits.	O	O	O
Unit total power consumption 3 (increment of 1000 kWh)	TP3	1000 kWh	Unit total power consumption is displayed by increment of 1000 kWh . Positive value is cumulated during power running and negative value during regeneration. The values in excess of ± 99 can be counted. However, the counter shows only the lower three digits of the actual value since the servo amplifier display is three digits. Negative value is indicated by the lit decimal points in the upper two digits.	O	O	O
Current position - Low	PSL	$\mu \mathrm{m}$ 0.0001 inch 0.001 degree pulse (Note 2)	When " _ 0 _" (positioning display) is set in [Pr. PT26], the current position is displayed as machine home position is 0 . When "_ _ 1 _" (roll feed display) is set in [Pr. PT26], the actual current position is displayed as start position is 0 .	O	O	人
Current position - High	PSh	$\begin{gathered} 1000 \mu \mathrm{~m} \\ 0.1 \text { inch } \\ \text { degree } \\ 1000 \text { pulse } \\ \text { (Note 2) } \\ \hline \end{gathered}$		O	O	\}

3. DISPLAY AND OPERATION SECTIONS

Status display	Symbol	Unit	Description			
				C	C	P
Command position - Low	CPL	$\mu \mathrm{m}$ 0.0001 inch 0.001 degree pulse (Note 2)	When "__ 0 _" (positioning display) is set in [Pr. PT26], the command current position is displayed as machine home position is 0 . When "_ _ 1 _" (roll feed display) is set in [Pr. PT26], turning on the start signal starts counting from 0 and a command current position to the target position is displayed in the automatic mode. The command positions of the selected point table are displayed at a stop. At the manual mode, the command positions of the selected point table are displayed. Negative value is indicated by the lit decimal points in the upper two digits.	O	O	\checkmark
Command position - High	CPh	$\begin{gathered} 1000 \mu \mathrm{~m} \\ 0.1 \text { inch } \\ \text { degree } \\ 1000 \text { pulse } \\ \text { (Note 2) } \\ \hline \end{gathered}$		O	0	\checkmark
Command remaining distance - Low	rnL	$\mu \mathrm{m}$ 0.0001 inch 0.001 degree pulse (Note 2)	The remaining distance to the command position of the currently selected point table/program is displayed. Negative value is indicated by the lit decimal points in the upper two digits.	O	O	-
Command remaining distance - High	rnh	$\begin{gathered} 1000 \mu \mathrm{~m} \\ 0.1 \text { inch } \\ \text { degree } \\ 1000 \text { pulse } \\ (\text { Note 2) } \\ \hline \end{gathered}$		O	O	\rangle
Point table No./program No./command station position	Pno		For the point table method and program method, the point table and program No. currently being executed are displayed. The selected number is displayed during a temporary stop or manual operation. For the indexer method, the command next station position is displayed.	O	O	O
Step No.	Sno		The step No. of the program currently being executed is displayed. At a stop, 0 is displayed.		0	
Analog override voltage	oru	V	The analog override voltage is displayed.	0	0	
Override level	or	\%	The setting value of the override is displayed. When the override is disabled, 100% is displayed.	O	O	O

Note 1. CP: Positioning mode (point table method)
CL: Positioning mode (program method)
PS: Positioning mode (indexer method)
2. The unit can be selected from $\mu \mathrm{m} /$ inch/degree/pulse with [Pr. PT01].
(3) Changing the status display screen

The status display on the servo amplifier at power-on can be changed with [Pr. PC36]. The status displayed by default varies depending on the control mode as follows:

Control mode	Status display
Position	Cumulative feedback pulses (pulse unit)
Position/speed	Cumulative feedback pulses (pulse unit)/ Servo motor speed (r/min unit)
Speed	Servo motor speed (r/min unit)
Speed/torque	Servo motor speed (r/min unit)/lnstantaneous torque
Torque	Instantaneous torque
Torque/position	Instantaneous torque/Cumulative feedback pulses (pulse unit)
Positioning (point table method/program method)	Current position - Low
Positioning (indexer method)	Cumulative feedback pulses (pulse unit)

3. DISPLAY AND OPERATION SECTIONS

3.2.3 Diagnostic mode

Diagnosis contents can be displayed on the display. Press the "UP" or "DOWN" button to change the display data as desired.
(1) Display transition

(2) Diagnosis display list

Name		Display	Description
Sequence			Not ready Indicates that the servo amplifier is being initialized or an alarm has occurred.
			Ready Indicates that initialization is completed, and the servo amplifier is in servo-on state and ready to operate.
Drive recorder enabled/disabled display		15	Drive recorder enabled When an alarm occurs in this state, the drive recorder will operate and record the status of occurrence.
			Drive recorder disabled The drive recorder will not operate on the following conditions. 1.The graph function of MR Configurator2 is being used. 2.The machine analyzer function is being used. 3.[Pr. PF21] is set to " -1 ".
External I/O signal display		Refer to section 3.2.7.	This Indicates the on/off status of external I/O signal.
Output signal (DO) forced output		151	This allows digital output signal to be switched on/off forcibly. Refer to section 3.2.8 for details.
Test operation mode	JOG operation	101	JOG operation can be performed when there is no command from an external controller. For details, refer to section 18.5 .10 (2) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
	Positioning operation		Positioning operation can be performed when there is no command from an external controller. MR Configurator2 is required to perform positioning operation. For details, refer to section 4.5 .9 (3) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
	Motor-less operation		Without connecting the servo motor, output signals or status display can be provided in response to the input device as if the servo motor is actually running. For details, refer to section 4.5 .9 (4) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
	Machine analyzer operation	$\pm \infty=1$	Merely connecting the servo amplifier allows the resonance point of the mechanical system to be measured. MR Configurator2 is required to perform machine analyzer operation. For details, refer to section 11.7 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
	For manufacturer adjustment		This is for manufacturer adjustment.
	Single-step feed		This function is available only in the point table method and program method. When the positioning operation is executed in accordance with the point table or program set by MR Configurator2, the diagnosis display changes to "d-6" during singlestep feed. For other control mode, the display does not change to "d-6". Refer to section 3.2.9 for details. The status will be displayed with the "MODE" button. The "UP" and "DOWN" buttons are disabled.

3. DISPLAY AND OPERATION SECTIONS

Name	Display	Description
Software version: lower		Indicates the version of the software. The software version is displayed while the "SET" button is pressed and held. Press the "MODE" button to shift to the next display mode. Press the "UP" or "DOWN" button to shift to the next diagnosis menu.
Software version: upper		Indicates the system number of the software. The software system number is displayed while the "SET" button is pressed and held. Press the "MODE" button to shift to the next display mode. Press the "UP" or "DOWN" button to shift to the next diagnosis menu.
Automatic VC offset	1815	If offset voltages in the analog circuits inside and outside the servo amplifier cause the servo motor setting speed not to be the designated value at VC (Analog override) of 0 V , a zero-adjustment of offset voltages will be automatically performed. When using this function, enable the function in the following procedure. When it is enabled, [Pr. PC37] value changes to the automatically adjusted offset voltage. 1) Press the "SET" button once. 2) Set the number in the first digit to " 1 " with the "UP" button. 3) Press the "SET" button. This function cannot be used if the input voltage of VC is -0.4 V or less, or +0.4 V or more. (Note)

[^1]
3. DISPLAY AND OPERATION SECTIONS

Name	Display	Description
Servo motor series ID		Displays the series ID of the servo motor currently connected. Press the "SET" button to show the lower 3 digits of servo motor series ID. For indication details, refer to appendix 1 of "Servo Motor Instruction Manual (Vol. 3)". Press the "UP" or "DOWN" button to shift to the next diagnosis menu.
Servo motor type ID		Displays the type ID of the servo motor currently connected. Press the "SET" button to show the lower 3 digits of servo motor type ID. For indication details, refer to appendix 1 of "Servo Motor Instruction Manual (Vol. 3)". Press the "UP" or "DOWN" button to shift to the next diagnosis menu.
Servo motor encoder ID	$\begin{array}{\|l\|l\|l\|} \hline 1 & 1 & 1 \\ \hline 1 & 1 \\ \hline & \downarrow \text { "SET" } \\ \hline 1 & 1 & 1 \\ \hline & 1 & 1 \\ \hline \end{array}$	Displays the servo motor encoder ID of the servo motor currently connected. Press the "SET" button to show the lower 3 digits of servo motor encoder ID. For indication details, refer to appendix 1 of "Servo Motor Instruction Manual (Vol. 3)". Press the "UP" or "DOWN" button to shift to the next diagnosis menu.
For manufacturer adjustment	115	This is for manufacturer adjustment.
For manufacturer adjustment	115	This is for manufacturer adjustment.
Teaching function	Refer to section 3.2.10.	After an operation travels to a target position (MEND (Travel completion) is turned on) with a JOG operation or manual pulse generator operation, pushing the "SET" button of the operation area or turning on TCH (Teach) will import the position data. This function is available only in the point table method. In other control modes, the display remains the same.

3. DISPLAY AND OPERATION SECTIONS

3.2.4 Alarm mode

The current alarm, past alarm history, and parameter error are displayed. The alarm number that has occurred or the parameter numbers in error are displayed on the display.
Current alarm

3. DISPLAY AND OPERATION SECTIONS

| Name | Description |
| :--- | :--- | :--- |
| Parameter | |
| error No./point table error No. (Note 2) | This indicates no occurrence of [AL. 37
 Parameter error]. |

Note 1. If a parameter error and point table error occur simultaneously, the display shows the parameter error.
2. The display shows only when the current alarm is [AL. 37 Parameter error].

Functions at occurrence of an alarm
(1) The current alarm is displayed in any mode.
(2) Even during an alarm occurrence, the other display can be viewed by pressing the button in the operation area. At this time, the decimal point in the third digit remains flickering.
(3) Remove the cause of the alarm and clear it with any of the following methods. (Refer to chapter 8 for the alarms that can be cleared.)
(a) Cycle the power.
(b) Press the "SET" button on the current alarm display.
(c) Turn on RES (Reset).
(4) Use [Pr. PC18] to clear the alarm history.
(5) Press the "UP" or "DOWN" button to move to the next history.

3. DISPLAY AND OPERATION SECTIONS

3.2.5 Point table setting

POINT

Point table No. 1 to No. 99 can be set with the operation section of the servo amplifier. To set point table No. 100 to No. 255, use MR Configurator2.

You can set the target position, servo motor speed, acceleration time constant, deceleration time constant, dwell, sub function and M code.
(1) Display transition

3. DISPLAY AND OPERATION SECTIONS

(2) Setting list

The following point table setting can be displayed.

Status display	Symbol	Unit	Description	Indication range
Point table No.	P01		Specify the point table to set the target position, servo motor speed, acceleration time constant, deceleration time constant, dwell, sub function, and M code.	1 to 255
Target position	PoS	$10^{\text {STM }} \mu \mathrm{m}$ $10^{(\text {STM-4) }}$ inch 10^{-3} degree pulse (Note)	Set the travel distance.	$\begin{gathered} -999999 \\ \text { to } \\ 999999 \end{gathered}$
Servo motor speed	SPd	r/min	Set the command speed of the servo motor for execution of positioning. The setting value must be within the permissible speed of the servo motor used. If a value equal to or larger than the permissible speed is set, the value will be clamped at the permissible speed.	 0 to Permissible speed
Acceleration time constant	STA	ms	Set a time for the servo motor to reach the rated speed.	0 to 20000
Deceleration time constant	STb	ms	Set a time for the servo motor to stop from the rated speed.	0 to 20000
Dwell	TLn	ms	This function is enabled when you select the point table by input signal. To disable the dwell, set "0" or "2" to the sub function. To perform a varyingspeed operation, set "1", " 3 ", " 8 ", or " 9 " to the sub function and " 0 " to the dwell. When the dwell is set, the position command of the selected point table is completed. After the set dwell has elapsed, start the position command of the next point table.	0 to 20000
Sub function	H		This function is enabled when you select the point table by input signal. (1) When using the point table with the absolute value command method 0 : Executes automatic operation for a selected point table. 1: Executes automatic continuous operation without stopping for the next point table. 8: Executes automatic continuous operation without stopping for the point table selected at the start. 9: Automatic continuous operation is performed to point table No. 1. (2) When using this point table with the incremental value command method 2: Executes automatic operation for a selected point table. 3: Executes automatic continuous operation without stopping for the next point table. 10: Executes automatic continuous operation without stopping for the point table selected at the start. 11: Automatic continuous operation is performed to point table No. 1. When an opposite rotation direction is set, the servo motor rotates in the opposite direction after smoothing zero (command output) is confirmed. When "1" or " 3 " is set to the point table No. 255, [AL. 61] will occur at the time of point table execution.	0 to 3, 8 to 11
M code	MCd		This is the code output at the completion of positioning. The first digit and the second digit of the M code are outputted in 4-bit binary respectively.	0 to 99

Note. The unit can be selected from $\mu \mathrm{m} / \mathrm{inch} /$ degree/pulse with [Pr. PT01].

3. DISPLAY AND OPERATION SECTIONS

(3) Operation method

POINT

After changing and defining the setting values of the specified point table, the defined setting values of the point table are displayed. To discard the changed setting, press the "MODE" button for 2 s or more. The setting before the change will be displayed. Keep pressing the "UP" or "DOWN" button to continuously change the most significant digit of the setting values.
(a) Setting of 3 or less digits

The following example is the operation method at power-on to set " 1 " to the sub function of the point table No. 1.

Press the "UP" or "DOWN" button to switch to other item of the same point table No.
Press the "MODE" button to switch to the next point table No.

3. DISPLAY AND OPERATION SECTIONS

(b) Setting of 4 to 6 digits

The following example is the operation method to change the position data of the point table No. 1 to "123456".

Note 1. Pressing the "SET" button in either upper or lower 3-digit display makes the display flicker.
2. Press the "SET" button to confirm on upper 3-digits or lower 3-digits screen.

The display can be switched between upper and lower 3-digit by pressing the "MODE" button. Switching the display between upper and lower 3-digit is also possible by pressing the "MODE" button while the display is flickering.
The changed value will be canceled when the "MODE" button is pressed for 2 s or more while flickering.
Press the "UP" or "DOWN" button to switch to other item of the same point table No.
Press the "MODE" button to switch to the next point table No.

3. DISPLAY AND OPERATION SECTIONS

3.2.6 Parameter mode

(1) Parameter mode transition

After selecting the corresponding parameter mode with the "MODE" button, pressing the "UP" or "DOWN" button changes the display as follows.

3. DISPLAY AND OPERATION SECTIONS

(2) Operation method
(a) Parameters of 3 or less decimal digits.

The following example gives the operation procedure to change [Pr. PA Reverse rotation torque limit].
Press the "MODE" button to switch to the basic setting parameters screen.

Parameter number selection

Select a parameter number with the "UP" or "DOWN" button.
Press the "SET" button to display the item to be set to the selected parameter number.
Displaying the parameter contents

Press the "UP" or "DOWN" button to shift to the setting display of the next parameter number.
Press the "MODE" button to shift to the next display.
Press the "SET" button once to display the setting.
Press the "SET" button once when the setting is displayed. The setting flickers and is possible to be changed.
Changing the parameter contents

Press the "UP" or "DOWN" button to change the value and press the "SET" button to fix the setting. The setting will be displayed as it is after the setting is fixed.
To cancel the setting data, press the "MODE" button for 2 s while the display is flickering. The setting before the change will be displayed.
Press and hold the "UP" or "DOWN" button to change the data continuously. In that case, only the highest digit changes.
Example of pressing and holding the "UP" button

Example of pressing and holding the "DOWN" button

3. DISPLAY AND OPERATION SECTIONS

(b) Parameters of 4 to 6 decimal digits

The following example gives the operation procedure to change [Pr. PB03 Positioning command acceleration/deceleration time constants (position smoothing)] to "65535".

Press the "MODE" button to switch to the gain/filter setting parameters screen.
Press the "UP" or "DOWN" button to select [Pr. PB03].

Note 1. Pressing the "SET" button in either upper or lower 3-digit display makes the display flicker.
2. Press the "SET" button to confirm on upper 3-digits or lower 3-digits screen.

The display can be switched between upper and lower 3-digit by pressing the "MODE" button. Switching the display between upper and lower 3-digit is also possible by pressing the "MODE" button while the display is flickering.
The changed value will be canceled when the "MODE" button is pressed for 2 s or more while flickering.
To shift to the next parameter number, press the "UP" or "DOWN" button.
To change the screen to another, press the "UP" or "DOWN" button to change the screen to another parameter number display screen and press the "MODE" button.

3. DISPLAY AND OPERATION SECTIONS

(c) Parameters of 7 or more decimal digits

The following example gives the operation procedure to change the [Pr. PA06 Electronic gear numerator (command pulse multiplication numerator)] to "12345678".
Press the "MODE" button to switch to the basic setting parameters screen.

Note 1. Pressing the "SET" button in upper, middle, or lower 3-digit display makes the display flicker.
2. Pressing the "SET" button in upper, middle, or lower 3-digit display fixes the setting.

The display can be switched among upper, middle, and lower 3-digits by pressing the "MODE" button.
Switching the display between upper, middle, and lower 3-digit is also possible by pressing the "MODE" button while the display is flickering.
The changed value will be canceled when the "MODE" button is pressed for 2 s or more while flickering.
To shift to the next parameter number, press the "UP" or "DOWN" button.
To change the screen to another, press the "UP" or "DOWN" button to change the screen to another parameter number display screen and press the "MODE" button.

3. DISPLAY AND OPERATION SECTIONS

(d) Parameter of hexadecimal

The following example gives the operation procedure to change the [Pr. PA01 Operation mode] to "1234".

Press the "MODE" button to switch to the basic setting parameters screen.
Press the "UP" or "DOWN" button to select [Pr. PA01].

Note 1. Pressing the "SET" button in upper, middle, or lower 2-digit display makes the display flicker.
2. Press the "SET" button to confirm on upper 2-digits or lower 2-digits screen.

The display can be switched among upper, middle, and lower 2-digits by pressing the "MODE" button.
Switch the display between upper, middle, and lower 2-digit is also possible by pressing the "MODE" button while the display is flickering.
The changed value will be canceled when the "MODE" button is pressed for 2 s or more while flickering.
To shift to the next parameter number, press the "UP" or "DOWN" button.
To change the screen to another, press the "UP" or "DOWN" button to change the screen to another parameter number display screen and press the "MODE" button.

3. DISPLAY AND OPERATION SECTIONS

3.2.7 External I/O signal display

POINT

The I/O signal settings can be changed using I/O setting parameters [Pr. PD04] to [Pr. PD28].

The on/off states of the digital I/O signals connected to the servo amplifier can be confirmed.
(1) Operation

The display at power-on. Use the "MODE" button to display the diagnostic screen.

(2) Display definition

The 7-segment LED segments and CN1 connector pins correspond as shown below.

The LED segment corresponding to the pin is lit to indicate on, and is extinguished to indicate off. The decimal point in the second digit flickers continuously.
For each pin signal in control modes, refer to section 2.2 (2).

3. DISPLAY AND OPERATION SECTIONS

3.2.8 Output signal (DO) forced output

POINT

When the servo system is used in a vertical lift application, turning on MBR (Electromagnetic brake interlock) by the DO forced output after assigning it to connector CN1 will release the electromagnetic brake, causing a drop. Take drop preventive measures on the machine side.

Output signals can be switched on/off forcibly independently of the servo status. Use this function for checking output signal wiring, etc. This operation must be performed in the servo off state by turning off SON (Servo-on).

The display at power-on. Use the "MODE" button to display the diagnostic screen.

3. DISPLAY AND OPERATION SECTIONS

3.2.9 Step feed

ACAUTION | The test operation mode is designed for checking servo operation. Do not use it |
| :--- |
| for an and operation. |

POINT

-MR Configurator2 is required to perform single-step feed.
Test operation cannot be performed unless SON (Servo-on) is not turned off.

The positioning operation can be performed in accordance with the point table No. or the program No. set by MR Configurator2.
Select the test operation/single-step feed from the menu of MR Configurator2. When the single-step feed window is displayed, input the following items and operate.

Point table operation

Program operation
(1) Point table No. or program No. setting

Enter a point table No. in the input box (a) "Point table No.", or a program No. in the input box (b) "Program No.".
(2) Starting the servo motor

Click "Operation Start" button (c) to rotate the servo motor.
(3) Temporarily stopping the servo motor

Click "Pause" button (d) to temporarily stop the servo motor.
While the servo motor is temporarily stopped, click the "Operation Start" button (c) to restart the rotation of the remaining travel distance.
While the servo motor is temporarily stopped, click the "Stop" button (e) to clear the remaining travel distance.
(4) Stopping the servo motor

Click the "Stop" button (e) to stop the servo motor. At this time, the remaining travel distance will be cleared. Click the "Operation Start" (c) button to restart the rotation.

3. DISPLAY AND OPERATION SECTIONS

(5) Forcibly stopping the servo motor software

Click the "Forced Stop" (f) button to make an instantaneous stop. When the "Forced Stop" button is enabled, the "Operation Start" button cannot be used. Click the "Forced Stop" button again to enable the "Operation Start" button.
(6) Switching to the normal operation mode

Before switching from the test operation mode to the normal operation mode, turn off the servo amplifier.

3. DISPLAY AND OPERATION SECTIONS

3.2.10 Teaching function

After an operation travels to a target position (MEND (Travel completion) is turned on) with a JOG operation or manual pulse generator operation, pushing the "SET" button of the operation area or turning on TCH (Teach) will import the position data. This function is available only in the point table method. In other control modes, the display remains the same.
(1) Teaching preparation

Teaching setting initial display
Press the "SET" button for approximately 2 s to switch to the teaching setting mode.

Select the point table No. with the "UP" or "DOWN" button when the first digit on the display flickers.

When the first digit on the display flickers, press the "SET" button to complete the teaching setting preparation. When the preparation is properly completed, the first digit on the display is lit and the third digit flickers.
(2) Position data setting method

After an operation travels to a target position (MEND (Travel completion) is turned on) with a JOG operation or manual pulse generator operation, pushing the "SET" button of the operation part or turning on TCH (Teach) will set the positioning address as position data.

When the third digit on the display flickers, the current position is written to the selected point table by pressing the "SET" button.

When the first or third digit on the display flickers, the display returns to the teaching setting initial screen by pressing the "MODE" button.
The following shows the conditions for when the teaching function operates.
(a) When the "positioning command method" of [Pr. PT01] is set to absolute value command method (_ - 0)
(b) Home position return completion (ZP (Home position return completion) is turned on)
(c) While the servo motor is being stopped (command output $=0$, MEND (Travel completion) is turned on)

MEMO

\qquad

4. HOW TO USE THE POINT TABLE

4. HOW TO USE THE POINT TABLE

The following items are the same as MR-J4-_A_-RJ servo amplifiers. For the details of the items, refer to each chapter/section (in "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual") indicated in the detailed explanation field.

Item	Detailed explanation	
	MR-J4-_A_-RJ 100 W or more	MR-J4-03A6-RJ
Switching power on for the first time	Section 4.1	Section 18.4

POINT
When you use a linear servo motor, replace the following left words to the right words.
Load to motor inertia ratio \rightarrow Load to motor mass ratio
Torque
\rightarrow Thrust
(Servo motor) speed \rightarrow (Linear servo motor) speed
-For the mark detection function (Current position latch), refer to section 12.2.1.
OFor the mark detection function (Interrupt positioning), refer to section 12.2.2.
-For the infinite feed function (setting degree), refer to section 12.3.

4. HOW TO USE THE POINT TABLE

4.1 Startup

4.1.1 Power on and off procedures

When the servo amplifier is powered on for the first time, the control mode is set to position control mode.
(Refer to section 4.2.1 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
This section provides a case where the servo amplifier is powered on after setting the positioning mode.
(1) Power-on

Switch power on in the following procedure. Always follow this procedure at power-on.

1) Switch off SON (Servo-on).
2) Make sure that ST1 (Forward rotation start) and ST2 (Reverse rotation start) are off.
3) Switch on the main circuit power supply and control circuit power supply.

The display shows "PoS" ("PSL" for MR-J4-03A6-RJ servo amplifiers), and in 2 s later, shows data.

MR-J4-_A_-RJ 100 W or more

MR-J4-03A6-RJ
(2) Power-off

1) Switch off ST1 (Forward rotation start) and ST2 (Reverse rotation start).
2) Switch off SON (Servo-on).
3) Switch off the main circuit power supply and control circuit power supply.

4.1.2 Stop

If any of the following situations occurs, the servo amplifier suspends the running of the servo motor and brings it to a stop.
Refer to section 3.10 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" for the servo motor with an electromagnetic brake.

Operation/command	Stopping condition
SON (Servo-on) off	The base circuit is shut off and the servo motor coasts.
Alarm occurrence	The servo motor decelerates to a stop with the command. With some alarms, however, the dynamic brake operates to bring the servo motor to a stop. (Refer to chapter 8. (Note 1))
EM2 (Forced stop 2) off	The servo motor decelerates to a stop with the command. [AL. E6 Servo forced stop warning] occurs. Refer to section 2.3 for EM1.
STO (STO1, STO2) off (Note 2)	The base circuit is shut off and the dynamic brake operates to bring the servo motor to a stop.
LSP (Forward rotation stroke end) off, LSN (Reverse rotation stroke end) off	It will bring the motor to a sudden stop and make it servo-locked. It can be run in the opposite direction.

Note 1. Only a list of alarms and warnings is listed in chapter 8. Refer to "MELSERVO-J4 Servo Amplifier Instruction Manual (Troubleshooting)" for details of alarms and warnings.
2. MR-J4-03A6-RJ servo amplifiers are not compatible with the STO function.

4. HOW TO USE THE POINT TABLE

4.1.3 Test operation

Before starting actual operation, perform test operation to make sure that the machine operates normally. Refer to section 4.1 for how to power on and off the servo amplifier.

Test operation of the servo motor alone in JOG operation of test operation mode

Manual operation of the servo motor alone in test operation mode

Test operation with the servo motor
and machine connected

In this step, confirm that the servo amplifier and servo motor operate normally.
With the servo motor disconnected from the machine, use the test operation mode and check whether the servo motor correctly rotates at the slowest speed. For the test operation mode, refer to section 3.1.8, 3.1.9, 3.2.8, and 3.2.9 in this manual, and section 4.5 .9 and 18.5 .10 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

In this step, confirm that the servo motor correctly rotates at the slowest speed in the manual operation mode.
Make sure that the servo motor rotates in the following procedure.

1) Switch on EM2 (Forced stop 2) and SON (Servo-on). When the servo amplifier is put in a servo-on status, RD (Ready) switches on.
2) Switch on LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end).
3) When MD0 (Operation mode selection 1) is switched off from the controller and ST1 (Forward rotation start) or ST2 (Reverse rotation start) is switched on in the manual operation mode, the servo motor starts rotating. Set a low speed to the point table at first, make the servo motor operate, and check the rotation direction of the motor, etc. If the motor does not operate in the intended direction, check the input signal.

In this step, connect the servo motor with the machine and confirm that the machine operates normally under the commands from the controller. Make sure that the servo motor rotates in the following procedure.

1) Switch on EM2 (Forced stop 2) and SON (Servo-on). When the servo amplifier is put in a servo-on status, RD (Ready) switches on.
2) Switch on LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end).
3) When MDO (Operation mode selection 1) is switched off from the controller and ST1 (Forward rotation start) or ST2 (Reverse rotation start) is switched on in the manual operation mode, the servo motor starts rotating. Set a low speed to the point table at first, make the servo motor operate, and check the rotation direction of the machine, etc. If the machine does not operate in the intended direction, check the input signal. In the status display, check for any problems of the servo motor speed, load ratio, etc.

Check automatic operation from the controller.

4. HOW TO USE THE POINT TABLE

4.1.4 Parameter setting

POINT

The following encoder cables are of four-wire type. When using any of these encoder cables, set [Pr. PC22] to "1 _ _ " to select the four-wire type. Incorrect setting will result in [AL. 16 Encoder initial communication error 1].
MR-EKCBL30M-L
MR-EKCBL30M-H
MR-EKCBL40M-H
MR-EKCBL50M-H

When you use the servo under the point table method, set [Pr. PA01] to " \qquad 6" (Positioning mode (point table method)). Under the point table method, the servo can be used by merely changing the basic setting parameters ([Pr. PA __]) and positioning control parameters ([Pr. PT _ _]) mainly.
Set other parameters as necessary.
The following table shows the necessary setting of [Pr. PA _ _] and [Pr. PT _ _] under the point table method.

Note. MD0: Operation mode selection 1, DIO to DI7: Point table No. selection 1 to Point table No. selection 8

4. HOW TO USE THE POINT TABLE

4.1.5 Point table setting

Set the data for operation to the point table. The following shows the items to be set.

Item	Main description
Position data	Set the position data for movement.
Servo motor speed	Set the command speed of the servo motor for execution of positioning.
Acceleration time constant	Set the acceleration time constant.
Deceleration time constant	Set the deceleration time constant.
Dwell	Set the waiting time when performing automatic continuous operation.
Sub function	Set when performing automatic continuous operation.
M code	Outputs the first digit and the second digit of the M code in 4-bit binary respectively.

Refer to section 4.2.2 for details of the point table.

4.1.6 Actual operation

Start actual operation after confirmation of normal operation by test operation and completion of the corresponding parameter settings.

4.1.7 Troubleshooting at start-up

POINT

Using MR Configurator2, you can refer to the reason for rotation failure, etc.

The following faults may occur at start-up. If any of such faults occurs, take the corresponding action. "MR-J4-_A_" means "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

No.	Start-up sequence	Fault	Investigation	Possible cause	Reference
1	Power on	- The 7-segment LED display does not turn on. - The 7-segment LED display flickers.	Not improved even if CN1, CN2, and CN3 connectors are disconnected.	1. Power supply voltage fault 2. The servo amplifier is malfunctioning.	
			Improved when CN1 connector is disconnected.	Power supply of CN1 cabling is shorted.	
			Improved when CN2 connector is disconnected.	1. Power supply of encoder cabling is shorted. 2. Encoder is malfunctioning.	
			Improved when CN3 connector is disconnected.	Power supply of CN3 cabling is shorted.	
		Alarm occurs.	Refer to chapter 8 and remove the cause.		Chapter 8 (Note)
2	Switch on SON (Servo-on).	Alarm occurs.	Refer to chapter 8 and remove the cause.		Chapter 8 (Note)
		Servo motor shaft is not servo-locked. (Servo motor shaft is free.)	1. Check the display to see if the servo amplifier is ready to operate. 2. Check the external I/O signal indication (section 3.1.7 or 3.2.7) to see if SON (Servoon) is on.	1. SON (Servo-on) is not input. (wiring mistake) 2. 24 V DC power is not supplied to DICOM.	Section 3.1.7 Section 3.2.7

4. HOW TO USE THE POINT TABLE

No.	Start-up sequence	Fault	Investigation	Possible cause	Reference
3	Perform a home position return.	Servo motor does not rotate.	Call the external I/O signal display and check the on/off status of the input signal. (Refer to section 3.1.7 or 3.2.7.)	LSP, LSN, and ST1 are off.	$\begin{gathered} \hline \text { Section } \\ 3.1 .7 \\ \text { Section } \\ 3.2 .7 \\ \hline \end{gathered}$
			Check [Pr. PA11 Forward rotation torque limit] and [Pr. PA12 Reverse rotation torque limit].	Torque limit level is too low as compared to the load torque.	$\begin{gathered} \hline \text { Section } \\ 7.2 .1 \end{gathered}$
			When TLA (Analog torque limit) is usable, check the input voltage on the status display.	Torque limit level is too low as compared to the load torque.	Section 3.1.2 Section 3.2.2
		The home position return is not completed.	Call the external I/O signal display and check the on/off status of input signal DOG. (Refer to section 3.1.7 or 3.2.7.)	The proximity dog is set incorrectly.	Section 3.1.7 Section 3.2.7
4	Switch on ST1 (Forward rotation start) or ST2 (Reverse rotation start).	Servo motor does not rotate.	Call the external I/O signal display (section 3.1.7 or 3.2.7) and check the on/off status of the input signal.	LSP, LSN, ST1, and ST2 are off.	Section 3.1.7 Section 3.2.7
			Check [Pr. PA11 Forward rotation torque limit] and [Pr. PA12 Reverse rotation torque limit].	Torque limit level is too low as compared to the load torque.	$\begin{gathered} \hline \text { Section } \\ 7.2 .1 \end{gathered}$
			When TLA (Analog torque limit) is usable, check the input voltage on the status display.	Torque limit level is too low as compared to the load torque.	Section 3.1.2 Section 3.2.2
5	Gain adjustment	Rotation ripples (speed fluctuations) are large at low speed.	Make gain adjustment in the following procedure. 1. Increase the auto tuning response level. 2. Repeat acceleration/ deceleration more than three times to complete auto tuning.	Gain adjustment fault	MR-J4- _A_ Chapter 6
		Large load inertia moment causes the servo motor shaft to oscillate side to side.	If the servo motor may be driven with safety, repeat acceleration and deceleration three times or more to complete the auto tuning.	Gain adjustment fault	MR-J4_A_ Chapter 6

Note. Only a list of alarms and warnings is listed in chapter 8. Refer to "MELSERVO-J4 Servo Amplifier Instruction Manual (Troubleshooting)" for details of alarms and warnings.

4. HOW TO USE THE POINT TABLE

4.2 Automatic operation mode

4.2.1 Automatic operation mode

(1) Command method

Start operation using ST1 (Forward rotation start) or ST2 (Reverse rotation start). Absolute value command method and incremental value command method are provided in automatic operation mode.
(a) Absolute value command method

As position data, set the target address to be reached.

1) Millimeter, inch, and pulse unit

Setting range: -999999 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$ (STM $=$ Feed length multiplication [Pr. PT03]) -999999 to $999999\left[\times 10^{(\text {STM }-4)}\right.$ inch] (STM $=$ Feed length multiplication [Pr. PT03])
-999999 to 999999 [pulse]

2) Degree unit

Set the target position by indicating the CCW direction with a "+" sign and the CW direction with a "-" sign.
Under the absolute value command method, the rotation direction can be specified with a " + " or "-" sign.
An example of setting is shown below.

Coordinate system in degrees

- The coordinate is determined by referring to the position of 0 degree.
+ direction: $0 \rightarrow 90 \rightarrow 180 \rightarrow 270 \rightarrow 0$
- direction: $0 \rightarrow-90 \rightarrow-180 \rightarrow-270 \rightarrow-360$
- The positions of 270 degrees and -90 degrees are the same.
- The positions of 0 degree, 360 degrees and -360 degrees are the same.

The travel direction to the target position is set with [Pr. PT03].

[Pr. PT03] setting	Servo motor rotation direction
$-0 _-$	The servo motor rotates to the target position in a direction specified with a sign of the position data.
$-1^{1}--$	The servo motor rotates from the current position to the target position in the shorter direction. If the distances from the current position to the target position are the same for CCW and CW, the servo motor rotates in the CCW direction.

4. HOW TO USE THE POINT TABLE

a) When using the Rotation direction specifying ([Pr. PT03] = "_ 0 _ _")

When the position data of 270.000 degrees is specified, the servo motor rotates in the CCW direction.

When the position data of -90.000 degrees is specified, the servo motor rotates in the CW direction.

When the position data of -360.000 degrees is specified, the servo motor rotates in the CW direction. (A)
When you specify 360.000 degrees or 0 degree to the position data, the servo motor rotates in the CCW direction. (B)

4. HOW TO USE THE POINT TABLE

b) When using the shortest rotation specification ([Pr. PT03] = _ 1 _ _)

When the position data of 270.000 degrees is specified, the servo motor rotates in the CCW direction.

When the position data of -90.000 degrees is specified, the servo motor rotates in the CCW direction.

If the position data of 270.000 degrees is specified when the current position is at 90 , the distances in the CCW and CW are the same. In such a case, the servo motor rotates in the CCW direction.

4. HOW TO USE THE POINT TABLE

(b) Incremental value command method

As position data, set the travel distance from the current address to the target address.

1) Millimeter, inch, and pulse unit

Setting range: 0 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right.$] (STM $=$ Feed length multiplication [Pr. PT03]) -999999 to 999999 [$\times 10^{(\text {STM-4) }}$ inch] (STM $=$ Feed length multiplication [Pr. PT03]) -999999 to 999999 [pulse]

2) Degree unit

4. HOW TO USE THE POINT TABLE

(2) Point table
(a) Point table setting

1 to 255 point tables can be set. To use point table No. 16 to 255, enable DI4 (Point table No. selection 5) to DI7 (Point table No. selection 8) with "Device Setting" on MR Configurator2.
Set point tables using MR Configurator2 or the operation section of the servo amplifier.
The following table lists what to set. Refer to section 4.2 .2 for details of the settings.

Item	Main description
Position data	Set the position data for movement.
Servo motor speed	Set the command speed of the servo motor for execution of positioning.
Acceleration time constant	Set the acceleration time constant.
Deceleration time constant	Set the deceleration time constant.
Dwell	Set the waiting time when performing automatic continuous operation.
Sub function	Set when performing automatic continuous operation.
M code	Outputs the first digit and the second digit of the M code in 4-bit binary respectively.

(b) Selection of point tables

Using the input signal or the communication function, select the point table No. with the communication command from the controller such as a personal computer.
The following table lists the point table No. selected in response to the input signal and the communication command.
However, when using the input signal to select the point table No., you can only use point table No. 1 to 15 in the initial status.
To use point table No. 16 to 255, enable input signals DI4 (Point table No. selection 5) to DI7 (Point table No. selection 8) with "Device Setting" on MR Configurator2.
When using the communication function to select the point table No., refer to chapter 10.

Input signal (Note)								Selected point table No.
DI7	DI6	DI5	DI4	DI3	DI2	DI1	DIO	
0	0	0	0	0	0	0	0	0 (for home position return)
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
0	0	0	0	0	0	1	1	3
0	0	0	0	0	1	0	0	4
-	-	-	-	-	-	-	-	-
-	*	*	-	*	-	-	*	-
.	.	.	-	.	.	.	-	.
1	1	1	1	1	1	1	0	254
1	1	1	1	1	1	1	1	255

Note. 0: Off
1: On

4. HOW TO USE THE POINT TABLE

4.2.2 Automatic operation using point table

(1) Absolute value command method

By the sub function of the point table, you can set a point table used under the absolute value command method or the incremental value command method.
(a) Point table

Set the point table values using MR Configurator2 or the operation section.
Set the position data, servo motor speed, acceleration time constant, deceleration time constant, dwell and sub function to the point table.
To use the point table under the absolute value command method, set " 0 ", "1", " 8 ", or " 9 " to the sub function. To use the point table under the incremental value command method, set "2", "3", "10", or " 11 " to the sub function.
When you set a value outside this range to the point table, the set value will be clamped with the maximum or minimum value. When changing the command unit or the connected motor results in the set value outside this range, [AL. 37] will occur.

Item	Setting range	Unit	Description
Position data	$\begin{aligned} & -999999 \text { to } 999999 \\ & \text { (Note 1) } \end{aligned}$	$\begin{gathered} \times 10^{\text {STM }} \mathrm{um} \\ \times 10^{\text {STM }-4)} \text { inch } \\ \times 10^{-3} \text { degree } \\ \text { pulse } \end{gathered}$	(1) When using this point table under the absolute value command method Set the target address (absolute value). The teaching function is available for setting this value. (2) When using this point table under the incremental value command method Set the travel distance. A "-" sign indicates a reverse rotation command. The teaching function is not available. When teaching is executed, the setting will not be completed.
Servo motor speed	0 to permissible speed	r/min mm / s (Note 2)	Set the command speed of the servo motor for execution of positioning. The setting value must be within the permissible instantaneous speed of the servo motor used.
Acceleration time constant	0 to 20000	ms	Set a time until the servo motor rotates at the rated speed.
Deceleration time constant	0 to 20000	ms	Set a time from when the servo motor rotates at the rated speed until when the motor stops.
Dwell	0 to 20000	ms	Set the dwell. To disable the dwell, set "0" or "2" to the sub function. To perform continuous operation, set "1", "3", "8", "9", "10" or "11" to the sub function and 0 to the dwell. When the dwell is set, the position command of the selected point table is completed, and after the set dwell has elapsed, the position command of the next point table is started.

4. HOW TO USE THE POINT TABLE

Item	Setting range	Unit	Description
Sub function	0 to 3, 8 to 11		Set the sub function. (1) When using this point table under the absolute value command method 0 : Automatic operation is performed in accordance with a single point table selected. 1: Automatic continuous operation is performed to the next point table without a stop. 8: Automatic continuous operation is performed without a stop to the point table selected at start-up. 9: Automatic continuous operation is performed without stopping a point table No. 1. (2) When using this point table under the incremental value command method 2: Automatic operation is performed in accordance with a single point table selected. 3: Automatic continuous operation is performed to the next point table without a stop. 10: Automatic continuous operation is performed to the point table selected at start-up. 11: Automatic continuous operation is performed without stopping a point table No. 1. When a different rotation direction is set, smoothing zero (command output) is confirmed and then the rotation direction is reversed. Setting "1" or "3" to point table No. 255 results in an error. Refer to (3) (b) of this section.
M code	0 to 99		Outputs the first digit and the second digit of the M code in 4-bit binary respectively.

Note 1. The setting range of the position data in degrees is -360.000 to 360.000 . When the unit of the position data is $\mu \mathrm{m}$ or inch, the location of the decimal point is changed according to the STM setting.
2. The unit will be " mm / s " in the linear control mode.
(b) Parameter setting

Set the following parameters to perform automatic operation.

1) Command method selection ([Pr. PT01])

Select the absolute value command method as shown below.

2) Rotation direction selection ([Pr. PA14])

Select the servo motor rotation direction when ST1 (Forward rotation start) is switched on.

[Pr. PA14] setting	Servo motor rotation direction when ST1 (Forward rotation start) is switched on
0	CCW rotation with + position data CW rotation with - position data
1	CW rotation with + position data CCW rotation with - position data

4. HOW TO USE THE POINT TABLE

3) Position data unit ([Pr. PT01])

Set the unit of the position data.

[Pr. PT01] setting	Position data unit
$-0 __$	mm
$-1 _-$	inch
$2^{2} _-$	degree
$3^{3} __$	pulse

4) Feed length multiplication ([Pr. PT03])

Set the feed length multiplication (STM) of the position data.

[Pr. PT03] setting	Position data input range			
	[mm]	[inch]	[degree] (Note 1)	[pulse] (Note 1)
--- 0	- 999.999 to + 999.999	- 99.9999 to + 99.9999	$\begin{gathered} -360.000 \text { to }+360.000 \\ \text { (Note 2) } \end{gathered}$	- 999999 to +999999
_-- 1	- 9999.99 to + 9999.99	- 999.999 to + 999.999		
--- 2	- 99999.9 to +99999.9	- 9999.99 to + 9999.99		
- 3	-999999 to +999999	-99999.9 to +99999.9		

Note 1. The feed length multiplication setting ([Pr. PT03]) is not applied to the unit multiplication factor.
Adjust the unit multiplication factor in the electronic gear setting ([Pr. PA06] and [Pr. PA07]).
2. The "-" sign has different meanings under the absolute value command method and the incremental value command method. Refer to section 4.2.1 for details.
(c) Operation

Selecting DIO to DI7 for the point table and switching on ST1 starts positioning to the position data at the set speed, acceleration time constant and deceleration time constant. At this time, ST2 (Reverse rotation start) is invalid.

Item	Used device	Description
Automatic operation mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DI0 (Point table No. selection 1)	
	DI1 (Point table No. selection 2)	
	DI2 (Point table No. selection 3)	
Point table selection	DI3 (Point table No. selection 4)	Refer to (2) (b) of 4.2.1.
	DI4 (Point table No. selection 5)	
	DI5 (Point table No. selection 6)	
	DI6 (Point table No. selection 7)	
Start (Point table No. selection 8)	ST1 (Forward rotation start)	Switch on ST1 to start.

4. HOW TO USE THE POINT TABLE

(2) Incremental value command method
(a) Point table

Set the point table values using MR Configurator2 or the operation section.
Set the position data, servo motor speed, acceleration time constant, deceleration time constant, dwell and sub function to the point table.
When you set a value outside the setting range to the point table, the set value will be clamped with the maximum or minimum value. When changing the command unit or the connected motor results in the set value outside the setting range, [AL. 37] will occur.

Item	Setting range	Unit	Description
Position data	0 to 999999 (Note 1)	$\begin{gathered} \times 10^{\text {STM }} \mu \mathrm{m} \\ \times 10^{(\text {STM }-4)} \text { inch } \\ \times 10^{-3} \text { degree } \\ \text { pulse } \end{gathered}$	Set the travel distance. The teaching function is not available. When teaching is executed, the setting will not be completed. The unit can be changed by [Pr. PT03] (Feed length multiplication).
Servo motor speed	0 to permissible speed	$\mathrm{r} / \mathrm{min}$ mm/s (Note 2)	Set the command speed of the servo motor for execution of positioning. The setting value must be the permissible instantaneous speed or less of the servo motor used.
Acceleration time constant	0 to 20000	ms	Set a time until the servo motor rotates at the rated speed.
Deceleration time constant	0 to 20000	ms	Set a time from when the servo motor rotates at the rated speed until when the motor stops.
Dwell	0 to 20000	ms	Set the dwell. To disable the dwell, set " 0 " to the sub function. To perform continuous operation, set "1", "8" or "9" to the sub function and 0 to the dwell. When the dwell is set, the position command of the selected point table is completed, and after the set dwell has elapsed, the position command of the next point table is started.
Sub function	$0,1,8$ to 9		Set the sub function. 0 : Automatic operation is performed in accordance with a single point table selected. 1: Automatic continuous operation is performed to the next point table without a stop. 8: Automatic continuous operation is performed without a stop to the point table selected at start-up. 9: Automatic continuous operation is performed without stopping a point table No. 1. Refer to section 4.2.2 for details.
M code	0 to 99		Outputs the first digit and the second digit of the M code in 4-bit binary respectively.

Note 1. The setting range of the position data in degrees is 0 to 999.999 . When the unit of the position data is $\mu \mathrm{m}$ or inch, the location of the decimal point is changed according to the STM setting.
2. The unit will be " mm / s " in the linear control mode.

4. HOW TO USE THE POINT TABLE

(b) Parameter setting

Set the following parameters to perform automatic operation.

1) Command method selection ([Pr. PT01])

Select the incremental value command method as shown below.

2) Rotation direction selection ([Pr. PA14])

Select the servo motor rotation direction when ST1 (Forward rotation start) or ST2 (Reverse rotation start) is switched on.

[Pr. PA14] setting	Servo motor rotation direction	
	ST1 (Forward rotation start)	ST2 (Reverse rotation start)
0	CCW rotation (address increase)	CW rotation (address decrease)
1	CW rotation (address increase)	CCW rotation (address decrease)

ST2: on
[Pr. PA14]: 0

[Pr. PA14]: 1
3) Position data unit ([Pr. PT01])

Set the unit of the position data.

[Pr. PT01] setting	Position data unit
$-0 _-$	mm
$-1 _-$	inch
$-2 _-$	degree
$3^{3} _-$	pulse

4) Feed length multiplication ([Pr. PT03])

Set the feed length multiplication (STM) of the position data.

[Pr. PT03] setting	Position data input range			
	[mm]	[inch]	[degree] (Note)	[pulse] (Note)
_-_0	0 to + 999.999	0 to + 99.9999	0 to +999.999	0 to +999999
_-- 1	0 to + 9999.99	0 to + 999.999		
--- 2	0 to + 99999.9	0 to + 9999.99		
- 3	0 to +999999	0 to +99999.9		

[^2]Adjust the unit multiplication factor in the electronic gear setting ([Pr. PA06] and [Pr. PA07]).

4. HOW TO USE THE POINT TABLE

(c) Operation

Selecting DI0 to DI7 for the point table and switching on ST1 starts a forward rotation of the motor over the travel distance of the position data at the set speed, acceleration time constant and deceleration time constant.
Switching on ST2 starts a reverse rotation of the motor in accordance with the values set to the selected point table.
When the positioning operation is performed consecutively under the incremental value command method, the servo motor rotates in the same direction only.
To change the travel direction during continuous operation, perform the operation under the absolute value command method.

Item	Used device	Description
Automatic operation mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DI0 (Point table No. selection 1) DI1 (Point table No. selection 2) DI2 (Point table No. selection 3) DI3 (Point table No. selection 4) Point table selection (Point table No. selection 5) DI5 (Point table No. selection 6) DI6 (Point table No. selection 7) DI7 (Point table No. selection 8)	
Start	ST1 (Forward rotation start)	

4. HOW TO USE THE POINT TABLE

(3) Automatic operation timing chart
(a) Automatic individual positioning operation

1) Absolute value command method ([Pr. PT01] = \qquad 0)

While the servo motor is stopped under servo-on state, switching on ST1 (Forward rotation start) starts the automatic positioning operation.
The following shows a timing chart.

Note 1. The detection of external input signals is delayed by the set time in the input filter setting of [Pr. PD29]. Considering the output signal sequence from the controller and signal variations due to hardware, configure a sequence that changes the point table selection earlier.
2. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 to PT7 cannot be outputted simultaneously.

4. HOW TO USE THE POINT TABLE

2) Incremental value command method ([Pr. PT01] =

While the servo motor is stopped under servo-on state, switching on ST1 (Forward rotation start) or ST2 (Reverse rotation start) starts the automatic positioning operation.
The following shows a timing chart.

Note 1. The detection of external input signals is delayed by the set time in the input filter setting of [Pr. PD29].
Considering the output signal sequence from the controller and signal variations due to hardware, configure a sequence that changes the point table selection earlier.
2. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 to PT7 cannot be outputted simultaneously.

4. HOW TO USE THE POINT TABLE

(b) Automatic continuous positioning operation

By merely selecting a point table and switching on ST1 (Forward rotation start) or ST2 (Reverse rotation start), the operation can be performed in accordance with the point tables having consecutive numbers.

1) Absolute value command method ([Pr. PT01] = \qquad
By specifying the absolute value command or the incremental value command in the sub function of the point table, the automatic continuous operation can be performed.

The following shows how to set.

Point table setting		
Dwell	Sub function	
	When position data is absolute value	When position data is incremental value
1 or more	1	3

a) Positioning in a single direction

The following shows an operation example with the set values listed in the table below.
In this example, point table No. 1 and point table No. 3 are under the absolute value command method, and point table No. 2 is under the incremental value command method.

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	M code
1	5.00	3000	100	150	100	1	05
2	5.00	2000	150	200	200	3	10
3	15.00	1000	300	100	Disabled	$0($ Note $)$	15

Note. Always set "0" or "2" to the sub function of the last point table among the consecutive point tables.
0 : When using the point table under the absolute value command method
2: When using the point table under the incremental value command method

Note. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 to PT7 cannot be outputted simultaneously.

4. HOW TO USE THE POINT TABLE

b) Positioning in the reverse direction midway

The following shows an operation example with the set values listed in the table below.
In this example, point table No. 1 and point table No. 3 are under the absolute value command method, and point table No. 2 is under the incremental value command method.

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	M code
1	5.00	3000	100	150	100	1	05
2	7.00	2000	150	200	200	3	10
3	8.00	1000	300	100	Disabled	0 (Note)	15

Note. Always set "0" or "2" to the sub function of the last point table among the consecutive point tables.
0 : When using the point table under the absolute value command method
2: When using the point table under the incremental value command method

Note. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 to PT7 cannot be outputted simultaneously.

4. HOW TO USE THE POINT TABLE

c) Position data in degrees

The following shows an operation example with the set values listed in the table below. In this example, point table No. 1, point table 2, and point table No. 4 are under the absolute value command method, and point table No. 3 is under the incremental value command method.

Point table No.	Position data [degree]	Servo motor speed [r/min]	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	Mcode
1	120.000	1000	100	150	100	1	0
2	-320.000	500	150	100	200	1	10
3	-230.000	3000	200	300	150	3	15
4	70.000	1500	300	100	Disabled	$0($ Note $)$	20

Note. Always set "0" or "2" to the sub function of the last point table among the consecutive point tables.
0 : When using the point table under the absolute value command method
2: When using the point table under the incremental value command method

Note. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 to PT7 cannot be outputted simultaneously.

4. HOW TO USE THE POINT TABLE

2) Incremental value command method ([Pr. PT01] = \square 1)

The position data of the incremental value command method is the sum of the position data of consecutive point tables.
The following shows how to set.

Point table setting	
Dwell	Sub function
1 or more	1

a) Positioning in a single direction

The following shows an operation example with the set values listed in the table below.

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	Mcode
1	5.00	3000	100	150	100	1	05
2	6.00	2000	150	200	200	1	10
3	3.00	1000	300	100	Disabled	0 (Note)	15

Note. Always set " 0 " to the sub function of the last point table among the consecutive point tables.

Note 1. Switching on ST2 (Reverse rotation start) starts positioning in the reverse rotation direction.
2. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 to PT7 cannot be outputted simultaneously.

4. HOW TO USE THE POINT TABLE

b) Position data in degrees

The following shows an operation example with the set values listed in the table below.

Point table No.	Position data [degree]	Servo motor speed [r/min]	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	M code
1	120.000	3000	100	150	0	1	05
2	60.000	1500	150	100	0	1	10
3	90.000	1000	300	100	Disabled	0 (Note)	15

Note. Always set " 0 " or " 2 " to the sub function of the last point table among the consecutive point tables.
0 : When using the point table under the absolute value command method
2: When using the point table under the incremental value command method

Note. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 to PT7 cannot be outputted simultaneously.

4. HOW TO USE THE POINT TABLE

(c) Varying-speed operation

By setting the sub function of the point table, the servo motor speed during positioning can be changed. Point tables are used by the number of the set speed.

1) Absolute value command method ([Pr. PT01] = \qquad 0)

Set "1" or "3" to the sub function to execute the positioning at the speed set in the following point table.
At this time, the position data selected at start is valid, and the acceleration/deceleration time constant set in the next and subsequent point tables is invalid.
By setting "1" or "3" to sub functions until point table No. 254, the operation can be performed at maximum 255 speeds.
Always set " 0 " or " 2 " to the sub function of the last point table.
To perform varying-speed operation, always set " 0 " to the dwell.
Setting "1" or more will enables the automatic continuous positioning operation.
The following table shows an example of setting.

Point table No.	Dwell [ms] (Note 1)	Sub function	Varying-speed operation
1	0	1	
2	0	3	
3	Disabled	$0($ Note 2$)$	
4	0	3	Consecutive point table data
5	0	1	
6	Disabled	2 (Note 2)	

Note 1. Always set "0".
2. Always set "0" or "2" to the sub function of the last point table among the consecutive point tables.

4. HOW TO USE THE POINT TABLE

a) Positioning in a single direction

The following shows an operation example with the set values listed in the table below.
In this example, point table No. 1 and point table No. 3 are under the absolute value command method, and point table No. 2 is under the incremental value command method.

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms] $($ Note 1$)$	Sub function	M code
1	5.00	3000	100	150	0	1	05
2	3.00	2000	Disabled	Disabled	0	3	10
3	10.00	1000	Disabled	Disabled	0	1	15
4	6.00	500	Disabled	Disabled	Disabled	2 (Note 2$)$	20

Note

1. Always set " 0 ".
2. Always set " 0 " or " 2 " to the sub function of the last point table among the consecutive point tables.

0 : When using the point table under the absolute value command method
2: When using the point table under the incremental value command method

Note. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 to PT7 cannot be outputted simultaneously.

4. HOW TO USE THE POINT TABLE

b) Positioning in the reverse direction midway

The following shows an operation example with the set values listed in the table below.
In this example, point table No. 1 and point table No. 3 are under the absolute value command method, and point table No. 2 is under the incremental value command method.

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell $[\mathrm{ms}]$ $($ Note 1$)$	Sub function	Mcode
1	5.00	3000	100	150	0	1	05
2	7.00	2000	Disabled	Disabled	0	3	10
3	8.00	1000	Disabled	Disabled	Disabled	0 (Note 2$)$	15

Note 1. Always set " 0 ".
2. Always set " 0 " or " 2 " to the sub function of the last point table among the consecutive point tables.

0 : When using the point table under the absolute value command method
2: When using the point table under the incremental value command method

Note. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 to PT7 cannot be outputted simultaneously.

4. HOW TO USE THE POINT TABLE

2) Incremental value command method ([Pr. PT01] = \qquad 1)

Setting "1" to the sub function executes positioning at the speed set in the following point table. At this time, the position data selected at start is valid, and the acceleration/deceleration time constant set in the next and subsequent point tables is invalid.
By setting " 1 " to sub functions until point table No. 254, the operation can be performed at maximum 255 speeds.
Always set " 0 " to the sub function of the last point table.
To perform varying-speed operation, always set " 0 " to the dwell.
Setting "1" or more will enables the automatic continuous positioning operation.
The following table shows an example of setting.

Point table No.	Dwell [ms] (Note 1)	Sub function	Varying-speed operation
1	0	1	
2	0	1	
3	Disabled	$0($ Note 2$)$	
4	0	1	Consecutive point table data
5	0	1	
6	Disabled	$0($ Note 2$)$	

Note 1. Always set "0".
2. Always set " 0 " to the sub function of the last point table among the consecutive point tables.

The following shows an operation example with the set values listed in the table below.

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms] (Note 1)	Sub function	M code
1	5.00	3000	100	150	0	1	05
2	3.00	2000	Disabled	Disabled	0	1	10
3	2.00	1000	Disabled	Disabled	0	1	15
4	6.00	500	Disabled	Disabled	Disabled	0 (Note 2$)$	20

Note 1. Always set " 0 ".
2. Always set " 0 " to the sub function of the last point table among the consecutive point tables.

Note. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 to PT7 cannot be outputted simultaneously.

4. HOW TO USE THE POINT TABLE

(d) Automatic repeat positioning operation

By setting the sub function of the point table, the operation pattern of the set point table No. can be returned to, and the positioning operation can be performed repeatedly.

1) Absolute value command method ([Pr. PT01] = \qquad 0)

Setting " 8 " or " 10 " to the sub function performs automatic continuous operation or varying-speed operation until that point table, and after the completion of positioning, performs the operation again from the operation pattern of the point table No. used at start-up.
Setting " 9 " or " 11 " to the sub function performs automatic continuous operation or varying-speed operation until that point table, and after the completion of positioning, performs the operation again from the operation pattern of point table No. 1.
a) Automatic repeat positioning operation by absolute value command method Example 1. Operations when " 8 " is set to the sub function of point table No. 4

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	M code
1	4.00	1500	200	100	150	1	01
2	5.00	3000	100	150	100	1	05
3	5.00	2000	150	200	200	3	10
4	15.00	1000	300	100	150	8	15

Operation sequence

1) Starting with point table No. 2
2) Executing point table No. 3
3) Executing point table No. 4
4) Executing again point table No. 2 used at start-up when " 8 " is set to the sub function of point table No. 4
5) Repeating the above execution in the sequence of 2) to 3) to 4) to 2) to 3) to 4)

PTO (Point table No. output 1)
to PT7 (Point table No. output 8)
(Note)
M code output (Note)

Note. PT0 to PT7 and M code are not outputted in automatic continuous operation.

4. HOW TO USE THE POINT TABLE

Example 2. Operations when " 9 " is set to the sub function of point table No. 3

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	M code
1	0.00	3000	100	150	100	1	05
2	5.00	2000	150	200	200	1	10
3	15.00	1000	300	100	150	9	15

Operation sequence

1) Starting with point table No. 2
2) Executing point table No. 3
3) Executing point table No. 1 when " 9 " is set to the sub function of point table No. 3
4) Repeating the above execution in the sequence of 1) to 2) to 3) to 1) to 2) to 3)

Note. PT0 to PT7 and M code are not outputted in automatic continuous operation.

4. HOW TO USE THE POINT TABLE

b) Automatic repeat positioning operation by incremental value command method

Example 1. Operations when "10" is set to the sub function of point table No. 4

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	M code
1	4.00	1500	200	100	150	1	01
2	5.00	3000	100	150	100	3	05
3	10.00	2000	150	200	200	1	10
4	5.00	1000	300	100	150	10	15

Operation sequence

1) Starting with point table No. 2
2) Executing point table No. 3
3) Executing point table No. 4
4) Executing again point table No. 2 used at start-up when "10" is set to the sub function of point table No. 4
5) Repeating the above execution in the sequence of 1) to 2) to 3) to 4) to 2) to 3) to 4)

Note. PT0 to PT7 and M code are not outputted in automatic continuous operation.

4. HOW TO USE THE POINT TABLE

Example 2. Operations when "11" is set to the sub function of point table No. 3

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	M code
1	5.00	3000	100	150	100	3	05
2	10.00	2000	150	200	200	1	10
3	5.00	1000	300	100	150	11	15

Operation sequence

1) Starting with point table No. 2
2) Executing point table No. 3
3) Executing point table No. 1 when " 11 " is set to the sub function of point table No. 3
4) Repeating the above execution in the sequence of 1) to 2) to 3) to 1) to 2) to 3)

PTO (Point table No. output 1)
to PT7 (Point table No. output 8)
(Note)
M code output (Note)

Note. PT0 to PT7 and M code are not outputted in automatic continuous operation.

4. HOW TO USE THE POINT TABLE

c) Varying-speed operation by absolute value command method

Example. Operations when "8" is set to the sub function of point table No. 3

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	M code
1	5.00	3000	100	150	0	1	05
2	5.00	2000	Disabled	Disabled	0	3	10
3	15.00	1000	Disabled	Disabled	0	8	15

Operation sequence

1) Starting with point table No. 1
2) Varying the speed and executing point table No. 2
3) Varying the speed and executing point table No. 3
4) Executing point table No. 1 used at start-up in CW direction when " 8 " is set to the sub function of point table No. 3
5) Repeating the above execution in the sequence of 1) to 2) to 3) to 4) to 2) to 3) to 4)

Note. PT0 to PT7 and M code are not outputted in automatic continuous operation.

4. HOW TO USE THE POINT TABLE

d) Varying-speed operation by incremental value command method

Example. Operations when "10" is set to the sub function of point table No. 3

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	M code
1	5.00	3000	100	150	0	3	00
2	10.00	2000	150	200	0	1	10
3	5.00	1000	300	100	0	10	15

Operation sequence

1) Starting with point table No. 1
2) Varying the speed and executing point table No. 2
3) Varying the speed and executing point table No. 3
4) Varying the speed, and executing point table No. 1 when " 10 " is set to the sub function of point table No. 3
5) Repeating the above execution in the sequence of 1) to 2) to 3) to 4) to 2) to 3) to 4)

Note. PT0 to PT7 and M code are not outputted in automatic continuous operation.

4. HOW TO USE THE POINT TABLE

2) Incremental value command method ([Pr. PT01] = \qquad
Setting "8" to the sub function performs automatic continuous operation or varying-speed operation until that point table, and after the completion of positioning, performs the operation again from the operation pattern of the set point table.
Setting " 9 " to the sub function performs automatic continuous operation or varying-speed operation until that point table, and after the completion of positioning, performs the operation again from the operation pattern of point table No. 1.
a) Automatic repeat positioning operation by incremental value command method

Example 1. Operations when " 8 " is set to the sub function of point table No. 3

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	M code
1	4.00	1500	200	100	150	1	01
2	5.00	3000	100	150	100	1	05
3	6.00	2000	150	200	200	8	10

Operation sequence

1) Starting with point table No. 2
2) Executing point table No. 3
3) Executing again point table No. 2 used at start-up when " 8 " is set to the sub function of point table No. 3
4) Repeating the above execution in the sequence of 1) to 2) to 3) to 2) to 3)

Note. PT0 to PT7 and M code are not outputted in automatic continuous operation.

4. HOW TO USE THE POINT TABLE

Example 2. Operations when " 9 " is set to the sub function of point table No. 2

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	M code
1	5.00	3000	100	150	100	1	05
2	6.00	2000	150	200	200	9	10

Operation sequence

1) Starting with point table No. 2
2) Executing point table No. 1 when " 9 " is set to the sub function of point table No. 2
3) Repeating the above execution in the sequence of 1) to 2) to 1) to 2)

PT0 (Point table No. output 1)
to PT7 (Point table No. output 8)
(Note)
M code output (Note)

Note. PT0 to PT7 and M code are not outputted in automatic continuous operation.

4. HOW TO USE THE POINT TABLE

b) Varying-speed operation by incremental value command method

Example. Operations when " 8 " is set to the sub function of point table No. 2

Point table No.	Position data $\left[10^{\text {STM }} \mu \mathrm{m}\right]$	Servo motor speed $[\mathrm{r} / \mathrm{min}]$	Acceleration time constant $[\mathrm{ms}]$	Deceleration time constant $[\mathrm{ms}]$	Dwell [ms]	Sub function	M code
1	5.00	3000	100	150	0	1	05
2	6.00	2000	Disabled	Disabled	0	8	10

Operation sequence

1) Starting with point table No. 1
2) Varying the speed and executing point table No. 2
3) Executing again point table No. 1 used at start-up when " 8 " is set to the sub function of point table No. 2
4) Repeating the above execution in the sequence of 1) to 2) to 3) to 2) to 3)

Note. PT0 to PT7 and M code are not outputted in automatic continuous operation.

4. HOW TO USE THE POINT TABLE

(e) Temporary stop/restart

When TSTP (Temporary stop/restart) is switched on during automatic operation, the servo motor decelerates with the deceleration time constant of the point table being executed, and then stops temporarily.
Switching on TSTP (Temporary stop/restart) again restarts the servo motor rotation for the remaining distance.
During a temporary stop, ST1 (Forward rotation start) or ST2 (Reverse rotation start) does not function even if it is switched on.

When automatic operation mode is changed to manual operation mode during a temporary stop, the remaining travel distance is cleared at the time of servo-off or inputting the clear signal.
The temporary stop/restart input does not function during a home position return or JOG operation.
The temporary stop/restart input functions in the following states.

Operation status	Automatic operation	Manual operation	Home position return
During a stop			
During acceleration	Temporary stop		
At a constant speed	Temporary stop		
During deceleration			
During a temporary stop	Restart		

1) When the servo motor is rotating

Note. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 to PT7 cannot be outputted simultaneously.

4. HOW TO USE THE POINT TABLE

2) During dwell

Note. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PT0 to PT7 cannot be outputted simultaneously.
(f) Suspension of automatic operation

Suspend the automatic operation or change the operation pattern in the following procedure.
For the suspension during positioning, bring the motor to a stop with TSTP (Temporary stop/restart), then switch off MD0 (Operation mode selection 1) and set the operation to manual mode. At that time, the remaining travel distance is cleared.

(g) Handling of control unit "degree"

1) Current position/command position address

The current position/command position address is of ring-address type.

4. HOW TO USE THE POINT TABLE

2) Software limit activation/deactivation setting

POINT

After changing the "+" or "-" sign of an axis with the software limit activation setting, perform a home position return.

- When activating the software limit in an incremental system, perform a home position return after power-on.
a) Setting range

When the unit is "degree", the setting range of the software limit is 0 degree (lower limit) to 359.999 degrees (upper limit).

When you set a value other than 0 degree to 359.999 degrees in [Pr. PT15] to [Pr. PT18], the set value is converted as follows. (It will be clamped between 0 degree and 359.999 degrees.)
\(\left.\begin{array}{|c|c|}\hline Software limit value \& After conversion

\hline 360.000 degrees to 999.999 degrees \& The remainder of the set value divided by

360\end{array}\right]\)\begin{tabular}{cc}
-0.001 degrees to -359.999 degrees \& The sum of the set value and 360

\hline-360.000 degrees to -999.999 degrees \& | The sum of 360 and the quotient of the set |
| :---: |
| value divided by 360 |

\hline
\end{tabular}

b) When the software limit is activated

Set the software limit - ([Pr. PT17] and [Pr. PT18]) for the start position and the software limit + ([Pr. PT15] and [Pr. PT16]) for the target position.
The movable range is the section from - to + in the CCW direction.

Set the movable range of section A as follows.

- Software limit - $\cdots 315.000$ degrees
- Software limit + $\cdots 90.000$ degrees

Set the movable range of section B as follows.

- Software limit - $\cdots 90.000$ degrees
- Software limit + $\cdots 315.000$ degrees

4. HOW TO USE THE POINT TABLE

c) When the software limit is deactivated

When deactivating the software limit, set the same values to the software limit - ([Pr. PT17] and [Pr. PT18]) and the software limit + ([Pr. PT15] and [Pr. PT16]).
Control can be performed independently of the software limit setting.
3) Position range output activation/deactivation setting
a) Setting range

When the unit is "degree", the setting range of the position range output is 0 degree (lower limit) to 359.999 degrees (upper limit).
When you set a value other than 0 degree to 359.999 degrees in [Pr. PT19] to [Pr. PT22], the set value is converted as follows. (It will be clamped between 0 degree and 359.999 degrees.)

Position range output address	After conversion
360.000 degrees to 999.999 degrees	The remainder of the set value divided by 360
-0.001 degrees to -359.999 degrees	The sum of the set value and 360
-360.000 degrees to -999.999 degrees	The sum of 360 and the quotient of the set value divided by 360

b) Effective setting of position range output

Set the position range output address - ([Pr. PT21] and [Pr. PT22]) for the start position and the position range output address + ([Pr. PT19] and [Pr. PT20]) for the target position.
The movable range is the section from - to + in the CCW direction.

Set the movable range of section A as follows.

- Position range output address - $\cdots 315.000$ degrees
- Position range output address + $\cdots 90.000$ degrees

Set the movable range of section B as follows.

- Position range output address - -9.90 .000 degrees
- Position range output address $+\cdots 315.000$ degrees

4. HOW TO USE THE POINT TABLE

4.3 Manual operation mode

For the machine adjustment, matching of home position, or the like, the JOG operation or the manual pulse generator operation can be used for movement to an arbitrary position.

4.3.1 JOG operation

(1) Setting

According to the purpose of use, set input devices and parameters as shown below. In this case, DIO (Point table No. selection 1) to DI7 (Point table No. selection 8) are invalid.

Item	Used device/parameter	Setting
Manual operation mode selection	MD0 (Operation mode selection 1)	Switch off MD0.
Servo motor rotation direction	[Pr. PA14]	Refer to (2) of this section.
JOG speed	[Pr. PT13]	Set the servo motor speed.
Acceleration/deceleration time constant	Point table No. 1	Use the acceleration/deceleration time constant of point table No. 1.

(2) Servo motor rotation direction

[Pr. PA14] setting	Servo motor rotation direction	
	ST1 (Forward rotation start) on	ST2 (Reverse rotation start) on
0	CCW rotation	CW rotation
1	CW rotation	CCW rotation

Pr. PA14: 0

Pr. PA14: 1
(3) Operation

Switching on ST1 (Forward rotation start) performs the operation at the JOG speed set by a parameter and the acceleration/deceleration constant of point table No. 1. For the rotation direction, refer to (2) of this section. Switching on ST2 (Reverse rotation start) starts the rotation in the reverse direction of ST1 (Forward rotation start).
Simultaneously switching on or off ST1 (Forward rotation start) and ST2 (Reverse rotation start) stops the operation.

4. HOW TO USE THE POINT TABLE

(4) Timing chart

4. HOW TO USE THE POINT TABLE

4.3.2 Manual pulse generator operation

(1) Setting

POINT

To enhance noise immunity, set "_ 2 _ _" to [Pr. PA13] when the command pulse frequency is 500 kpulse/s or less, or set "_3__" to [Pr. PA13] when the command pulse frequency is 200 kpulse/s or less.

According to the purpose of use, set input devices and parameters as shown below. In this case, DIO (Point table No. selection 1) to DI7 (Point table No. selection 8) are invalid.

Item	Device/parameter to be used	Setting
Manual operation mode selection	MD0 (Operation mode selection 1)	Switch off MD0.
Manual pulse generator multiplication	[Pr. PT03]	Set the multiplication factor for the pulses generated from the manual pulse generator. For details, refer to (3) of this section.
Servo motor rotation direction	[Pr. PA14]	Refer to (2) of this section.
Command input pulse train input form	[Pr. PA13]	Set "_-_2" (A/B-phase pulse train).
Pulse train filter selection	[Pr. PA13]	Set other than "_0__" and "_1__".

(2) Servo motor rotation direction

[Pr. PA14] setting	Servo motor rotation direction	
	Manual pulse generator operation: forward rotation	Manual pulse generator operation: reverse rotation
	CCW rotation	CW rotation
1	CW rotation	CCW rotation

4. HOW TO USE THE POINT TABLE

(3) Manual pulse generator multiplication
(a) Using the input signals (devices) for setting

In "Device setting" of MR Configurator2, set TP0 (Pulse generator multiplication 1) and TP1 (Pulse generator multiplication 2) to input signals.

TP1 (Pulse generator multiplication 2) (Note)	TP0 (Pulse generator multiplication 1) (Note)	Servo motor rotation multiplication to manual pulse generator rotation amount	Travel distance			
			[mm]	[inch]	[degree]	[pulse]
0	0	[Pr. PT03] setting valid				
0	1	1 time	0.001	0.0001	0.001	1
1	0	10 times	0.01	0.001	0.01	10
1	1	100 times	0.1	0.01	0.1	100

Note. 0: Off
1: On
(b) Using the parameter for setting Use [Pr. PT03] to set the servo motor rotation multiplication to the rotation amount of the manual pulse generator.

[Pr. PT03] setting	Servo motor rotation multiplication to manual pulse generator rotation amount	Travel distance			
		[mm]	[inch]	[degree]	[pulse]
-0_{-}	1 time	0.001	0.0001	0.001	1
-1_{2}	10 times	0.01	0.001	0.01	10
-2_{-}	100 times	0.1	0.01	0.1	100

(4) Operation

Turning the manual pulse generator starts the servo motor rotation. For the rotation direction of the servo motor, refer to (2) of this section. When you turn the manual pulse generator during a JOG operation, the commands inputted from the manual pulse generator are adjusted by the commands of JOG operation.
4.4 Home position return mode

Point

Before performing the home position return, make sure that the limit switch operates.
-Check the home position return direction. An incorrect setting will cause a reverse running.

- Check the input polarity of the proximity dog. Otherwise, it may cause an unexpected operation.
OIn the following cases, make sure that the Z-phase has been passed through once before performing a home position return.
- When an incremental linear encoder is used in the linear servo motor control mode
- When an incremental external encoder is used in the fully closed loop control mode
- When a servo amplifier is used in the DD motor control mode

Z-phase unpassed will trigger [AL. 90.5 Home position return incomplete warning].
For servo amplifiers with software version B6 or earlier, the dog type last Zphase reference home position return and the dogless Z-phase reference home position return cannot be used in the following operation modes.

- Fully closed loop control mode using a incremental linear encoder
- Linear servo motor control mode using a incremental linear encoder
- Direct drive motor control mode

Setting [Pr. PT04 Home position return type] to "__ 8" or "_ _ A" will trigger [AL. 37 Parameter error].

4.4.1 Outline of home position return

A home position return is performed to match the command coordinates with the machine coordinates. Under the incremental method, every time switching on the input power supply, you have to perform the home position return. Contrastingly, in the absolute position detection system, once you have performed the home position return at machine installation, the current position will be retained even if the power supply is shut off. Thereafter, the home position return is unnecessary when the power supply is switched on. This section shows the home position return methods of the servo amplifier. Select the optimum method according to the configuration and uses of the machine.
This servo amplifier has a home position return automatic retract function. When the machine stops on or beyond the proximity dog, this function automatically backs the machine to the proper position and then performs the home position return. Manually moving the machine by the JOG operation or others is unnecessary.

4. HOW TO USE THE POINT TABLE

(1) Home position return types

Select the optimum home position return type according to the machine type or others.

Type	Home position return method	Feature
Dog type	Deceleration starts at the proximity dog front end. After the rear end is passed, the position specified by the first Z-phase signal, or the position of the first Z-phase signal shifted by the home position shift distance is used as the home position.	- General home position return method using a proximity dog - The repeatability of the home position return is high. - The machine is less loaded. - Used when the width of the proximity dog can be set equal to or greater than the deceleration distance of the servo motor.
Count type	Deceleration starts at the proximity dog front end. After the proximity dog is passed, the motor travels the specified travel distance. Then, the position specified by the first Zphase signal, or the position of the first Z phase signal shifted by the home position shift distance is used as the home position.	- Home position return method using a proximity dog - Used to minimize the length of the proximity dog.
Data set type	An arbitrary position is used as the home position.	- No proximity dog is required.
Stopper type	A workpiece is pressed against a mechanical stopper, and the position where it is stopped is set as the home position.	- The home position return speed must be low enough because of the collision with the mechanical stopper. - The strength of the machine and its stopper must be increased.
Home position ignorance (servo-on position as home position)	The position where the servo is switched on is used as the home position.	
Dog type rear end reference	Deceleration starts at the proximity dog front end. After the rear end is passed, the position is shifted by the travel distance after proximity dog and the home position shift distance. The position after the shifts is set as the home position.	- The Z-phase signal is not required.
Count type front end reference	Deceleration starts at the proximity dog front end. The position is shifted by the travel distance after proximity dog and the home position shift distance. The position after the shifts is set as the home position.	- The Z-phase signal is not required.
Dog cradle type	After the proximity dog front end is detected, the position specified by the first Z-phase signal is used as the home position.	
Dog type last Z-phase reference	After the proximity dog front end is detected, the position is shifted away from the proximity dog in the reverse direction. Then, the position specified by the first Z-phase signal, or the position of the first Z-phase signal shifted by the home position shift distance is used as the home position.	
Dog type front end reference	From the proximity dog front end, the position is shifted by the travel distance after proximity dog and the home position shift distance. The position after the shifts is set as the home position.	- The Z-phase signal is not required.
Dogless Z-phase reference	The position specified by the first Z-phase signal, or the position of the first Z-phase signal shifted by the home position shift distance is used as the home position.	

4. HOW TO USE THE POINT TABLE

(2) Parameters for home position return

To perform the home position return, set each parameter as follows.
(a) Select the home position return type with [Pr. PT04 Home position return type].

(b) Select the starting direction for the home position return with [Pr. PT04 Home position return type]. Setting "0" starts the home position return in the address increase direction from the current position. Setting "1" starts the home position return in the address decrease direction from the current position.

(c) Select the polarity where the proximity dog is detected with the DOG (Proximity dog) polarity selection of [Pr. PT29 Function selection T-3]. Setting "0" detects the dog when DOG (Proximity dog) is off. Setting "1" detects the dog when DOG (Proximity dog) is on.

4. HOW TO USE THE POINT TABLE

4.4.2 Dog type home position return

This home position return type uses a proximity dog. Deceleration starts at the proximity dog front end. After the rear end is passed, the position specified by the first Z-phase signal, or the position of the first Z-phase signal shifted by the specified home position shift distance is used as the home position.

(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Home position return mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DI0 (Point table No. selection 1) to DI7 (Point table No. selection 8)	Switch off DI0 to DI7.
Dog type home position return	[Pr. PT04]	[Pr. PT04]
Home position return direction	[Pr. PT29]	Refer to section 4.4.1 (2) to select the home position return direction.
Dog input polarity	[Pr. PT05]	Refer to section 4.4.1 (2) to select the proximity dog input polarity.
Home position return speed	Set the rotation speed until the dog is detected.	
Creep speed	Set the rotation speed after the dog is detected.	
Home position shift distance	[Pr. PT07]	Set this item to shift the home position specified by the first Z-phase signal after passage of proximity dog rear end.
Home position return acceleration/deceleration time constant	Point table No. 1	Use the acceleration/deceleration time constant of point table No. 1.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.

(2) Proximity dog length

To generate the Z-phase signal of the servo motor during the DOG (Proximity dog) detection, the proximity dog length should satisfy formulas (4.1) and (4.2).
$L_{1} \geq \frac{V}{60} \cdot \frac{\mathrm{td}}{2}$
L_{1} : Proximity dog length [mm]
V: Home position return speed [$\mathrm{mm} / \mathrm{min}$]
td: Deceleration time [s]
$\mathrm{L}_{2} \geq 2 \cdot \Delta \mathrm{~S}$
L_{2} : Proximity dog length [mm]
$\Delta \mathrm{S}$: Travel distance per servo motor revolution [mm] (Note)

Note. For linear servo motor: travel distance per stop interval selection at the home position return of [Pr. PL01]

4. HOW TO USE THE POINT TABLE

(3) Timing chart

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.
(4) Adjustment

For the dog type home position return, adjust the setting to ensure the Z-phase signal generation during the dog detection. Locate the DOG (Proximity dog) rear end almost at the center between the generation positions of two consecutive Z-phase signals.
The generation position of the Z-phase signal can be checked with "Position within one-revolution" of "Status Display" on MR Configurator2.

4. HOW TO USE THE POINT TABLE

4.4.3 Count type home position return

In the count type home position return, after the proximity dog front end is detected, the motor travels the distance set with [Pr. PT09 Travel distance after proximity dog]. Then, the position specified by the first Zphase signal is used as the home position. Therefore, when DOG (Proximity dog) is on for 10 ms or longer, the proximity dog length has no restrictions. When the required proximity dog length for using the dog type home position return cannot be reserved, or when DOG (Proximity dog) is entered electrically from the controller or the like, use the count type home position return.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	
Home position return mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DIO (Point table No. selection 1) to DI7 (Point table No. selection 8)	Switch off DI0 to DI7.
Count type home position return	[Pr. PT04]	0: Select the count type.
Home position return direction	[Pr. PT04]	Refer to section 4.4.1 (2) to select the home position return direction.
Dog input polarity	[Pr. PT29]	Refer to section 4.4.1 (2) to select the dog input polarity.
Home position return speed	[Pr. PT05]	Set the rotation speed until the dog is detected.
Creep speed	[Pr. PT06]	Set the rotation speed after the dog is detected.
Home position shift distance	[Pr. PT07]	Set this item to shift the home position starting at the first Z-phase signal after passage of proximity dog front end and motion over the specified travel distance.
Travel distance after proximity dog	[Pr. PT09]	Set the travel distance after passage of proximity dog front end.
Home position return acceleration/deceleration time constant	Point table No. 1	Use the acceleration/deceleration time constant of point table No. 1.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.

4. HOW TO USE THE POINT TABLE

(2) Timing chart

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

4. HOW TO USE THE POINT TABLE

4.4.4 Data set type home position return

To set an arbitrary position as the home position, use the data set type home position return. The JOG operation, manual pulse generator operation, or the like can be used for movement. You can perform the data set type home position return at servo-on only.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Home position return mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DI0 (Point table No. selection 1) to DI7 (Point table No. selection 8)	Switch off DI0 to DI7.
Data set type home position return	[Pr. PT04]	$--_$2: Select the data set type.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.

(2) Timing chart

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

4. HOW TO USE THE POINT TABLE

4.4.5 Stopper type home position return

For the stopper type home position return, by using the JOG operation, manual pulse generator operation, or others, a workpiece is pressed against a mechanical stopper, and the position where it is stopped is used as the home position.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	
Home position return mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DI0 (Point table No. selection 1) to DI7 (Point table No. selection 8)	Switch off DI0 to DI7.
Stopper type home position return	[Pr. PT04]	3: Select the stopper type.
Home position return direction	[Pr. PT04]	Refer to section 4.4.1 (2) to select the home position return direction.
Home position return speed	[Pr. PT05]	Set the rotation speed until the workpiece is pressed against the mechanical stopper.
Stopper time	[Pr. PT10]	Set the time from when the home position data is obtained after the workpiece is pressed against the mechanical stopper until when ZP (home position return completion) is output.
Stopper type home position return torque limit value	[Pr. PT11]	Set the servo motor torque limit value at the execution of the stopper type home position return.
Home position return acceleration time constant	Point table No. 1	The acceleration/deceleration time constant of point table No. 1 is used.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.

4. HOW TO USE THE POINT TABLE

(2) Timing chart

Note 1. The following torque limits are enabled.

Input device (0: Off, 1: On)		Limit value status			Enabled torque limit value
TL1	TL				
0	0				Pr. PT11
0	1	TLA	>	Pr. PT11	Pr. PT11
		TLA	<	Pr. PT11	TLA
1	0	Pr. PC35	>	Pr. PT11	Pr. PT11
		Pr. PC35	<	Pr. PT11	Pr. PC35
1	1	TLA	>	Pr. PT11	Pr. PT11
		TLA	<	Pr. PT11	TLA

2. TLC turns on when a generated torque reaches a value set with any of [Pr. PA11 Forward rotation torque limit], [Pr. PA12 Reverse rotation torque limit], or [Pr. PC35 Internal torque limit 2].

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

4. HOW TO USE THE POINT TABLE

4.4.6 Home position ignorance (servo-on position as home position)

POINT

When you perform this home position return, it is unnecessary to switch to the home position return mode.

The position at servo-on is used as the home position.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used parameter	Setting
Home position ignorance	$[P r . ~ P T 04]$	$-\quad 4:$ Select the home position ignorance.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.

(2) Timing chart

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

4. HOW TO USE THE POINT TABLE

4.4.7 Dog type rear end reference home position return

POINT

This home position return method depends on the timing of reading DOG (Proximity dog) that has detected the rear end of a proximity dog. Therefore, when a home position return is performed at a creep speed of $100 \mathrm{r} / \mathrm{min}$, the home position has an error of 6400 pulses (for HG series servo motor). The higher the creep speed, the greater the error of the home position.

Deceleration starts at the front end of a proximity dog. After the rear end is passed, the position is shifted by the travel distance after proximity dog and the home position shift distance. The position after the shifts is used as the home position. The home position return is available independently of the Z-phase signal. Changing the creep speed may change the home position.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	
Home position return mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DIO (Point table No. selection 1) to DI7 (Point table No. selection 8)	Switch off DI0 to DI7.
Dog type rear end reference home position return	[Pr. PT04]	S.-_ S: Select the dog type (rear end detection/rear end reference).
Home position return direction	[Pr. PT04]	Refer to section 4.4.1 (2) to select the home position return direction.
Dog input polarity	[Pr. PT29]	Refer to section 4.4.1 (2) to select the dog input polarity.
Home position return speed	[Pr. PT05]	Set the rotation speed until the dog is detected.
Creep speed	[Pr. PT06]	Set the rotation speed after the dog is detected.
Home position shift distance	[Pr. PT07]	Set this item to shift the home position, which is specified after the rear end of a proximity dog is passed.
Travel distance after proximity dog	[Pr. PT09]	Set the travel distance specified after the rear end of a proximity dog is passed.
Home position return acceleration/deceleration time constant	Point table No. 1	Use the acceleration/deceleration time constant of point table No. 1.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.

4. HOW TO USE THE POINT TABLE

(2) Timing chart

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

4. HOW TO USE THE POINT TABLE

4.4.8 Count type front end reference home position return

POINT

This home position return method depends on the timing of reading DOG (Proximity dog) that has detected the front end of a proximity dog. Therefore, when a home position return is performed with the creep speed of $100 \mathrm{r} / \mathrm{min}$, the home position has an error of 6400 pulses (for HG series servo motor). The higher the creep speed, the greater the error of the home position.
After the front end of a proximity dog is detected, when a home position return ends without reaching the creep speed, [AL. 90] occurs. Set the travel distance after proximity dog and the home position shift distance enough for deceleration from the home position return speed to the creep speed.

Deceleration starts at the front end of a proximity dog. The position is shifted by the travel distance after proximity dog and the home position shift distance. The position after the shifts is used as the home position. The home position return is available independently of the Z-phase signal. Changing the creep speed may change the home position.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	
Home position return mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DIO (Point table No. selection 1) to DI7 (Point table No. selection 8)	Switch off DI0 to DI7.
Count type front end reference home position return	[Pr. PT04]	6: Select the count type (front end detection/front end reference).
Home position return direction	[Pr. PT04]	Refer to section 4.4.1 (2) to select the home position return direction.
Dog input polarity	[Pr. PT29]	Refer to section 4.4.1 (2) to select the dog input polarity.
Home position return speed	[Pr. PT05]	Set the rotation speed until the dog is detected.
Creep speed	[Pr. PT06]	Set the rotation speed after the dog is detected.
Home position shift distance	[Pr. PT07]	Set this to shift the home position, which is specified after the front end of a proximity dog is passed.
Travel distance after proximity dog	[Pr. PT09]	Set the travel distance specified after the front end of the proximity dog is passed.
Home position return acceleration/deceleration time constant	Point table No. 1	Use the acceleration/deceleration time constant of point table No. 1.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.

4. HOW TO USE THE POINT TABLE

(2) Timing chart

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

4.4.9 Dog cradle type home position return

You can use the position, which is specified by the first Z-phase signal after the front end of a proximity dog is detected, as the home position.

(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Home position return mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DIO (Point table No. selection 1) to DI7 (Point table No. selection 8)	Switch off DI0 to DI7.
Dog cradle type home position return	[Pr. PT04]	[Pr. PT04]
Home position return direction	[Pr. PT29]	Refer to section 4.4.1 (2) to select the home position return direction.
Dog input polarity	Refer to section 4.4.1 (2) to select the dog input polarity.	
Home position return speed	[Pr. PT05]	Set the rotation speed until the dog is detected.
Creep speed	[Pr. PT06]	Set the rotation speed after the dog is detected.
Home position shift distance	[Pr. PT07]	Set this item to shift the home position, which is specified by the Z-phase signal.
Home position return acceleration/deceleration time constant	Point table No. 1	Use the acceleration/deceleration time constant of point table No. 1.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.

4. HOW TO USE THE POINT TABLE

(2) Timing chart

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

4. HOW TO USE THE POINT TABLE

4.4.10 Dog type last Z-phase reference home position return

After the front end of a proximity dog is detected, the position is shifted away from the proximity dog at the creep speed in the reverse direction and then specified by the first Z-phase signal. The position of the first Zphase signal is used as the home position.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Home position return mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DIO (Point table No. selection 1) to DI7 (Point table No. selection 8)	Switch off DI0 to DI7.
Dog type last Z-phase reference home position return	[Pr. PT04]	- reference.
Home position return direction	[Pr. PT04]	Refer to section 4.4.1 (2) to select the home position return direction.
Dog input polarity	[Pr. PT29]	Refer to section 4.4.1 (2) to select the dog input polarity.
Home position return speed	[Pr. PT05]	Set the rotation speed until the dog is detected.
Creep speed	[Pr. PT06]	Set the rotation speed after the dog is detected.
Home position shift distance	[Pr. PT07]	Set this item to shift the home position, which is specified by the Z-phase signal.
Home position return acceleration/deceleration time constant	Point table No. 1	Use the acceleration/deceleration time constant of point table No. 1.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.

4. HOW TO USE THE POINT TABLE

(2) Timing chart

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

4. HOW TO USE THE POINT TABLE

4.4.11 Dog type front end reference home position return type

POINT

This home position return method depends on the timing of reading DOG (Proximity dog) that has detected the front end of a proximity dog. Therefore, when a home position return is performed at a creep speed of $100 \mathrm{r} / \mathrm{min}$, the home position has an error of 6400 pulses (for HG series servo motor). The higher the creep speed, the greater the error of the home position.

Starting from the front end of a proximity dog, the position is shifted by the travel distance after proximity dog and the home position shift distance. The position after the shifts is used as the home position. The home position return is available independently of the Z-phase signal. Changing the creep speed may change the home position.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Home position return mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DI0 (Point table No. selection 1) to DI7 (Point table No. selection 8)	Switch off DI0 to DI7.
Dog type front end reference home position return	[Pr. PT04]	reference.
Home position return direction	[Pr. PT04]	Refer to section 4.4.1 (2) to select the home position return direction.
Dog input polarity	[Pr. PT29]	Refer to section 4.4.1 (2) to select the dog input polarity.
Home position return speed	[Pr. PT05]	Set the rotation speed until the dog is detected.
Creep speed	[Pr. PT06]	Set the rotation speed after the dog is detected.
Home position shift distance	[Pr. PT07]	Set this item to shift the home position, which is specified by the Z-phase signal.
Home position return acceleration/deceleration time constant	Point table No. 1	Use the acceleration/deceleration time constant of point table No. 1.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.

4. HOW TO USE THE POINT TABLE

(2) Timing chart

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

4. HOW TO USE THE POINT TABLE

4.4.12 Dogless Z-phase reference home position return type

Starting from the Z-phase pulse position after the start of the home position return, the position is shifted by the home position shift distance. The position after the shifts is used as the home position.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Home position return mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DIO (Point table No. selection 1) to DI7 (Point table No. selection 8)	Switch off DI0 to DI7.
Dogless Z-phase reference home position return	[Pr. PT04]	_-_-_A: Select the dogless type (Z-phase reference).
Home position return direction	[Pr. PT04]	Refer to section 4.4.1 (2) to select the home position return direction.
Home position return speed	[Pr. PT05]	Set the rotation speed specified until the Z- phase is detected.
Creep speed	[Pr. PT06]	Set the rotation speed specified after the Z- phase is detected.
Home position shift distance	[Pr. PT07]	Set this item to shift the home position, which is specified by the Z-phase signal.
Home position return acceleration/deceleration time constant	Point table No. 1	Use the acceleration/deceleration time constant of point table No. 1.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.

(2) Timing chart

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

4. HOW TO USE THE POINT TABLE

4.4.13 Automatic retract function used for the home position return

For a home position return using the proximity dog, when the home position return is started from the position on or beyond the proximity dog, the home position return is performed after the machine moves back to the position where the home position can be performed.
(1) When the current position is on the proximity dog

When the current position is on the proximity dog, the machine moves backward automatically, and the home position return is performed.

After retracting to before proximity dog, the home position return starts from here.
(2) When the current position is beyond the proximity dog At start-up, the operation is performed in the direction of the home position return. When LSP (Forward rotation stroke end) or LSN (Reverse rotation stroke end) is detected, the machine moves backward automatically. The machine passes and stops before the proximity dog, and the home position return is performed from the position again. If the proximity dog cannot be detected, the machine stops at LSP or LSN on the opposite side, and [AL. 90 Home position return incomplete warning] will occur.

After retracting to before proximity dog, the home position return starts from here.

The software limit cannot be used with these functions.

4. HOW TO USE THE POINT TABLE

4.4.14 Automatic positioning to home position function

POINT

The automatic positioning to the home position cannot be performed from outside the setting range of position data. In this case, perform the home position return again using the home position return.

After power-on, if the home position return is performed again after the home position return is performed to define the home position, this function enables automatic positioning to the home position rapidly. For the absolute position detection system, the home position return is unnecessary after the power-on.
When the automatic positioning to the home position is performed at home position return incompletion, [AL. 90.1] will occur.

After the power-on, perform the home position return in advance.
Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Home position return mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DI0 (Point table No. selection 1) to DI7 (Point table No. selection 8)	Switch off DI0 to DI7.
Home position return speed	[Pr. PT05]	Set the servo motor speed to travel to the home position.
Home position return acceleration/deceleration time constant	Point table No. 1	Use the acceleration/deceleration time constant of point table No. 1.
Home position return direction	[Pr. PT04]	Set the rotation direction in degrees.

Set the home position return speed of the automatic positioning to home position function with [Pr. PT05]. The data of point table No. 1 is used for acceleration/deceleration time constants. Switching on ST2 (Reverse rotation start) enables high-speed automatic return.
Set the rotation direction at the time of degree unit setting with home position return direction of [Pr. PT04].

4. HOW TO USE THE POINT TABLE

4.5 Roll feed mode using the roll feed display function

The roll feed display function can change the current position of the status monitor and command position display.
Using the roll feed display function can use this servo amplifier as the roll feed mode. The roll feed mode can be used in the incremental system. Using the override function can change the feed speed during operation. Refer to section 2.4 for details.
(1) Parameter setting

No.	Name	Setting digit	Setting item	Setting value	Setting
PA03	Absolute position detection system	$--^{x}$	Absolute position detection system	---0 (initial value)	Always set the incremental system. It cannot be used by the absolute position detection system.
PT26	Current position/command position display selection	$--_{-}^{x}$	Current position/command position display selection	$--_{-1}$	Select the roll feed display.
PT26	Electronic gear fraction clear selection	---x	Electronic gear fraction clear selection	---1	Clear a fraction of the previous command by the electronic gear at start of the automatic operation. Always set "_-_1" (enabled) in the electronic gear fraction clear.

(2) Roll feed display function

When the roll feed display function is used, the status display of the current position and command position at start will be 0 .

4. HOW TO USE THE POINT TABLE

(3) Position data unit

The display unit is expressed in the unit set in [Pr. PT26], and the feed length multiplication is expressed in the unit set in [Pr. PT03].
When the unit is set in degrees, the roll feed display function is disabled.
Refer to section 4.2.2 for details.
(4) Operation method

Only the status display of the current position and command position changes. The operation method is the same as each operation mode.

Operation mode		Detailed explanation
Automatic operation	Automatic operation using the point table	Section 4.2.2
Manual operation	JOG operation	Section 4.3.1
	Manual pulse generator operation	Section 4.3.2
Home position return mode	Section 4.4	

4. HOW TO USE THE POINT TABLE

4.6 Point table setting method

The following shows the setting method of point tables using MR Configurator2.

4.6.1 Setting procedure

Click "Positioning-data" in the menu bar and click "Point Table" in the menu.

The following window will be displayed by clicking.

(1) Writing point table data (a)

Select changed point table data and click "Selected Items Write" to write the changed point table data to the servo amplifier.
(2) Writing all point table data (b)

Click "Write All" to write all the point table data to the servo amplifier.
(3) Reading all point table data (c)

Click the "Read" button to read and display all the point table data from the servo amplifier.
(4) Initial setting of point table data (d)

Click the "Set to default" button to initialize all the data of point table No. 1 to 255 . This button also initializes data currently being changed.

4. HOW TO USE THE POINT TABLE

(5) Verifying point table data (e)

Click the "Verify" button to verify all the data displayed and data of the servo amplifier.
(6) Detailed setting of point table data (f)

Click the "Detailed Setting" to change position data range and unit in the point table window. Refer to section 4.6.2 for details.
(7) Single-step feed (g)

Click "Single-step Feed" to perform the single-step feed test operation. Refer to section 3.1.9 or 3.2.9 for details.
(8) Copy and paste of point table data (h)

Click "Copy" to copy the point table data. Click "Paste" to paste the copied point table data.
(9) Inserting point table data (i)

Click the "Insert" button to insert a block to the previous row from the selected point table No. The selected point table No. and lower rows will be shifted down one by one.
(10) Deleting point table data (j)

Click the "Delete" button to delete all the data of the point table No. selected. The lower rows of the selected point table No. will be shifted up one by one.
(11) Changing point table data (k)

After selecting the data to be changed, enter a new value, and click "Enter". You can change the displayed range and unit with "(6) Detailed setting of point table data" of this section.
(12) Reading point table data (I)

Click "Open" to read the point table data.
(13) Saving point table data (m)

Click "Save As" to save the point table data.
(14) Updating project (n)

Click "Update Project" to update the point table data to a project.

4. HOW TO USE THE POINT TABLE

4.6.2 Detailed setting window

You can change position data range and unit with the detailed setting for the point table window. For the position data range and unit of [Pr. PT01] setting, refer to section 4.2.2. To reflect the setting for the corresponding parameter, click the "Update Project" button in the point table window.

(1) Command method selection (PT01 *CTY) 1)

Select a positioning command method from the absolute position command method and incremental value command method.
(2) Miscellaneous
(a) Feed length multiplication parameter setting STM (PT03 *FTY) 2)

Select any feed length multiplication from 1/10/100/1000.
(b) Position data unit setting (PT01 *CTY) 3)

Select any unit of position data from mm/inch/degree/pulse. While degree or pulse is selected, setting of feed length multiplication will be disabled.

MEMO

\qquad

5. HOW TO USE THE PROGRAM

5. HOW TO USE THE PROGRAM

The following items are the same as MR-J4-_A_-RJ servo amplifiers. For the details of the items, refer to each chapter/section (in "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual") indicated in the detailed explanation field.

Item	Detailed explanation	
	MR-J4-_A_-RJ 100 W or more	MR-J4-03A6-RJ
Switching power on for the first time	Section 4.1	Section 18.4

> | POINT | |
| :--- | :--- |
| When you use a linear servo motor, replace the following left words to the right | |
| words. | |
| $\begin{array}{ll}\text { Load to motor inertia ratio } & \rightarrow \text { Load to motor mass ratio } \\ \text { Torque } & \rightarrow \text { Thrust } \\ \text { (Servo motor) speed } & \rightarrow \text { (Linear servo motor) speed } \\ \text { For the mark detection function (Current position latch), refer to section 12.2.1. } \\ \text { For the mark detection function (Interrupt positioning), refer to section 12.2.2. } \\ \text { For the infinite feed function (setting degree), refer to section 12.3. }\end{array}$ | |

5.1 Startup

5.1.1 Power on and off procedures

When the servo amplifier is powered on for the first time, the amplifier enters the position control mode. (Refer to section 4.2.1 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
This section provides a case where the servo amplifier is powered on after the positioning mode setting.
(1) Power-on

Switch power on in the following procedure. Always follow this procedure at power-on.

1) Switch off SON (Servo-on).
2) Make sure that ST1 (Forward rotation start) is off.
3) Switch on the main circuit power supply and control circuit power supply.

The display shows "PoS" ("PSL" for MR-J4-03A6-RJ servo amplifiers), and in 2 s later, shows data.

(2) Power-off

1) Switch off ST1 (Forward rotation start).
2) Switch off SON (Servo-on).
3) Switch off the main circuit power supply and control circuit power supply.

5. HOW TO USE THE PROGRAM

5.1.2 Stop

If any of the following situations occurs, the servo amplifier suspends the running of the servo motor and brings it to a stop.
Refer to section 3.10 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" for the servo motor with an electromagnetic brake.

Operation/command	Stopping condition
Switch off SON (Servo-on).	The base circuit is shut off and the servo motor coasts.
Alarm occurrence	The servo motor decelerates to a stop with the command. With some alarms, however, the dynamic brake operates to bring the servo motor to a stop. (Refer to chapter 8. (Note 1))
EM2 (Forced stop 2) off	The servo motor decelerates to a stop with the command. [AL. E6 Servo forced stop warning] occurs. Refer to section 2.3 for EM1.
STO (STO1, STO2) off (Note 2)	The base circuit is shut off and the dynamic brake operates to bring the servo motor to a stop.
LSP (Forward rotation stroke end) off, LSN (Reverse rotation stroke end) off	It will bring the motor to a sudden stop and make it servo-locked. It can be run in the opposite direction.

[^3]
5. HOW TO USE THE PROGRAM

5.1.3 Test operation

Before starting actual operation, perform test operation to make sure that the machine operates normally. Refer to section 5.1.1 for how to power on and off the servo amplifier.

In this step, confirm that the servo amplifier and servo motor operate normally.
With the servo motor disconnected from the machine, use the test operation mode and check whether the servo motor correctly rotates at the slowest speed. For the test operation mode, refer to section 3.1.8, 3.1.9, 3.2.8, and 3.2.9 in this manual, and section 4.5.9 and 18.5.10 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

In this step, confirm that the servo motor correctly rotates at the slowest speed in the manual operation mode.
Make sure that the servo motor rotates in the following procedure.

1) Switch on EM2 (Forced stop 2) and SON (Servo-on). When the servo amplifier is put in a servo-on status, RD (Ready) is switched on.
2) Switch on LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end).
3) When MD0 (Operation mode selection 1) is switched off from the controller and ST1 (Forward rotation start) or ST2 (Reverse rotation start) is switched on in the manual operation mode, the servo motor starts rotating. Give a low speed command at first and check the rotation direction, etc. of the servo motor. If the servo motor does not operate in the intended direction, check the input signal.

In this step, connect the servo motor with the machine and confirm that the machine operates normally under the commands from the controller. Make sure that the servo motor rotates in the following procedure.

1) Switch on EM2 (Forced stop 2) and SON (Servo-on). When the servo amplifier is put in a servo-on status, RD (Ready) is switched on.
2) Switch on LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end).
3) When MDO (Operation mode selection 1) is switched off from the controller and ST1 (Forward rotation start) or ST2 (Reverse rotation start) is switched on in the manual operation mode, the servo motor starts rotating. Give a low speed command at first and check the operation direction, etc. of the machine. If the machine does not operate in the intended direction, check the input signal. In the status display, check for any problems of the servo motor speed, load ratio, etc.

Select a program from the controller, and check automatic operation.

5. HOW TO USE THE PROGRAM

5.1.4 Parameter setting

POINT

The following encoder cables are of four-wire type. When using any of these encoder cables, set [Pr. PC22] to "1 _ _ " to select the four-wire type. Incorrect setting will result in [AL. 16 Encoder initial communication error 1].
MR-EKCBL30M-L
MR-EKCBL30M-H
MR-EKCBL40M-H
MR-EKCBL50M-H

When using this servo by the program method, set [Pr. PA01] to " \qquad 7" (Positioning mode (program method)). For the program method, the servo can be used by merely changing the basic setting parameters ([Pr. PA __])]) and positioning control parameters ([Pr. PT \qquad]) mainly. As necessary, set other parameters.
The following table shows $\left[\mathrm{Pr} . \mathrm{PA}_{\ldots}\right.$ _ $]$ and $\left[\mathrm{Pr} . \mathrm{PT}_{\ldots}\right.$ _ $]$ settings required for the program method.

Operation mode selection item Operation mode		Parameter setting		Input device setting	
		[Pr. PA01]	[Pr. PT04]	$\begin{gathered} \text { MD0 } \\ (\text { Note 1) } \end{gathered}$	DIO to DI7 (Note 1)
Automatic operation mode of the program method		--- 7		On	Any
Manual operation mode	JOG operation			Off	
	Manual pulse generator operation				
Home position return	Dog type		--- 0	On	Any (Note 2)
	Count type		_-_ 1		
	Data set type		_-_ 2		
	Stopper type		=--3		
	Home position ignorance (servo-on position as home position)		_-_ 4		
	Dog type rear end reference		_-- 5		
	Count type front end reference		--- 6		
	Dog cradle type		--_ 7		
	Dog type last Z-phase reference		_--8		
	Dog type front end reference		_-_9		
	Dogless Z-phase reference		\ldots - ${ }^{\text {A }}$		

Note 1. MD0: Operation mode selection 1, DIO to DI7: Program No. selection 1 to Program No. selection 8
2. Select a program containing a "ZRT" command, which performs the home position return.

5. HOW TO USE THE PROGRAM

5.1.5 Actual operation

Start actual operation after confirmation of normal operation by test operation and completion of the corresponding parameter settings.

5.1.6 Troubleshooting at start-up

$$
\text { § CAUTION } \begin{aligned}
& \text { Never make a drastic adjustment or change to the parameter values as doing so } \\
& \text { will make the operation unstable. }
\end{aligned}
$$

The following faults may occur at start-up. If any of such faults occurs, take the corresponding action. "MR-J4-_A_" means "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

No.	Start-up sequence	Fault	Investigation	Possible cause	Reference
1	Power on	- The 7-segment LED display does not turn on. - The 7-segment LED display flickers.	Not improved even if CN1, CN2, and CN3 connectors are disconnected.	1. Power supply voltage fault 2. The servo amplifier is malfunctioning.	
			Improved when CN1 connector is disconnected.	Power supply of CN1 cabling is shorted.	
			Improved when CN2 connector is disconnected.	1. Power supply of encoder cabling is shorted. 2. Encoder is malfunctioning.	
			Improved when CN3 connector is disconnected.	Power supply of CN3 cabling is shorted.	
		Alarm occurs.	Refer to chapter 8 and remove the cause.		Chapter 8 (Note)
2	Switch on SON (Servo-on).	Alarm occurs.	Refer to chapter 8 and remove the cause.		$\begin{array}{c\|} \hline \text { Chapter } 8 \\ \text { (Note) } \\ \hline \end{array}$
		Servo motor shaft is not servo-locked. (Servo motor shaft is free.)	1. Check the display to see if the servo amplifier is ready to operate. 2. Check the external I/O signal indication (section 3.1.7 or 3.2 .7) to see if SON (Servoon) is on.	1. SON (Servo-on) is not input. (wiring mistake) 2. 24 V DC power is not supplied to DICOM.	Section 3.1.7 Section 3.2.7
3	Perform a home position return.	Servo motor does not rotate.	Call the external I/O signal display and check the on/off status of the input signal. (Refer to section 3.1.7 or 3.2.7.)	LSP, LSN, and ST1 are off.	Section 3.1.7 Section 3.2.7
			Check [Pr. PA11 Forward rotation torque limit] and [Pr. PA12 Reverse rotation torque limit].	Torque limit level is too low as compared to the load torque.	Section 7.2.1
			When TLA (Analog torque limit) is usable, check the input voltage on the status display.	Torque limit level is too low as compared to the load torque.	Section 3.1.2 Section 3.2.2
		The home position return is not completed.	Call the external I/O signal display and check the on/off status of input signal DOG. (Refer to section 3.1.7 or 3.2.7.)	The proximity dog is set incorrectly.	Section 3.1.7 Section 3.2.7

No.	Start-up sequence	Fault	Investigation	Possible cause	Reference
4	Switch on ST1 (Forward rotation start).	Servo motor does not rotate.	Call the external I/O signal display (Section 3.1.7 or 3.2.7) and check the on/off status of the input signal.	LSP, LSN, and ST1 are off.	Section 3.1.7 Section 3.2.7
			Check [Pr. PA11 Forward rotation torque limit] and [Pr. PA12 Reverse rotation torque limit].	Torque limit level is too low as compared to the load torque.	Section 7.2.1
			When TLA (Analog torque limit) is usable, check the input voltage on the status display.	Torque limit level is too low as compared to the load torque.	Section 3.1.2 Section 3.2.2
5	Gain adjustment	Rotation ripples (speed fluctuations) are large at low speed.	Make gain adjustment in the following procedure. 1. Increase the auto tuning response level. 2. Repeat acceleration/ deceleration more than three times to complete auto tuning.	Gain adjustment fault	$\begin{aligned} & \text { MR-J4- } \\ & \text { A_- } \\ & \text { Chapter } \\ & 6 \end{aligned}$
		Large load inertia moment causes the servo motor shaft to oscillate side to side.	If the servo motor may be driven with safety, repeat acceleration and deceleration three times or more to complete the auto tuning.	Gain adjustment fault	$\begin{gathered} \text { MR-J4- } \\ \text { A- } \\ \text { Chapter } \\ 6 \end{gathered}$

Note. Only a list of alarms and warnings is listed in chapter 8. Refer to "MELSERVO-J4 Servo Amplifier Instruction Manual (Troubleshooting)" for details of alarms and warnings.

5.2 Program operation method

5.2.1 Program operation method

In advance, select a program created on MR Configurator2 by using an input signal or communication to start operation with ST1 (Forward rotation start).
This servo amplifier is factory set to the absolute value command method.
For the position data, you can set the absolute value travel command ("MOV" command), which specifies the target address, and the incremental value travel command ("MOVI" command), which specifies the travel distance. Refer to section 4.2 .1 (1) and 5.2 .3 (1) (a) for the movable range and the setting unit.

5. HOW TO USE THE PROGRAM

5.2.2 Program language

The maximum number of steps of a program is 640 . Up to 256 programs can be created; however, the total number of the steps of all programs must be 640 or less.
A set program is selectable by using DIO (Program No. selection 1) to DI7 (Program No. selection 8).
(1) Command list

5. HOW TO USE THE PROGRAM

Command	Name	Setting	Setting range	Unit	Indirect specification (Note 7)	Description
TLP (Note 8)	Forward rotation torque limit	TLP (Setting value)	to 1000	0.1 \%		Using the maximum torque as 100%, limit the generated torque of the servo motor in the CCW power running or CW regeneration. The setting value is valid until the program stops. Specifying the setting value to "0" enables the [Pr. PA11] setting.
TLN (Note 8)	Reverse rotation torque limit	TLN (Setting value)	0, 1 to 1000	0.1 \%		Using the maximum torque as 100%, limit the generated torque of the servo motor in the CW power running or CCW regeneration. The setting value is valid until the program stops. Specifying the setting value to "0" enables the [Pr. PA12] setting.
TQL (Note 8)	Torque limit	TQL (Setting value)	0, 1 to 1000	0.1 \%		Using the maximum torque as 100%, limit the generated torque of the servo motor. The setting value is valid until the program stops. Specifying the setting value to "0" enables the [Pr. PA11] and [Pr. PA12] settings.

Note 1. The "SYNC", "OUTON", "OUTOF", "TRIP", "TRIPI", "COUNT", "LPOS", and "ITP" commands are valid even during a command output.
2. The "SPN" command is valid while the "MOV", "MOVA", "MOVI", or "MOVIA" command is executed. The "STA", "STB", "STC", and "STD" commands are valid while the "MOV" or "MOVI" command is executed.
3. When the on time is set using [Pr. PT23] to [Pr. PT25], the next command is executed after the set time elapses.
4. When the remaining distance is the set value or less, or while the servo motor stops or decelerates, the program skips the "ITP" command and proceeds to the next step.
5. The parameter value is valid normally. However, the value set for the command is valid after the command is executed until the program stops.
6. The unit of the position command data input can be changed with [Pr. PT01]. For the setting range for each unit, refer to section 5.2.3 (1) (a).
7. For the explanation of the indirect specification, refer to section 5.2.2 (2) (j).
8. The parameter value is valid normally. However, the value set for the command is valid after the command is executed until the program stops.
9. The unit will be "mm/s" in the linear control mode.
(2) Detailed explanations of commands
(a) Positioning conditions (SPN/STA/STB/STC/STD)

POINT

Once values are set for the "SPN", "STA", "STB" and "STC" commands, the values are valid without resetting them. (The values are not initialized at the program startup.) The settings are valid in the other programs.
-The value set for the "STD" command is valid in the same program only. The value is initialized to the setting value of [Pr. PC03] at the program startup, and therefore the value is invalid in the other programs.

The "SPN", "STA", "STB", "STC", and "STD" commands are valid while the "MOV" or "MOVA" command is executed.

5. HOW TO USE THE PROGRAM

1) Program example 1

When executing two operations where the servo motor speeds, acceleration time constants, and deceleration time constants are the same and the travel commands are different

Command	Description			
SPN (1000)	Servo motor speed	1000 [r/min]	a)	
STA (200)	Acceleration time constant	200 [ms]	b)	
STB (300)	Deceleration time constant	300 [ms]	c)	
MOV (1000)	Absolute value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	d)	
TIM (100)	Dwell	100 [ms]	e)	
MOV (2000)	Absolute value travel command	$2000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	f)	\longleftarrow
STOP	Program stop			

2) Program example 2

When executing two operations where the servo motor speeds, acceleration time constants, deceleration time constants, and travel commands are different

3) Program example 3

Using the S-pattern acceleration/deceleration time constants reduces abrupt movements at acceleration or deceleration. When the "STD" command is used, [Pr. PC03 S-pattern acceleration/deceleration time constant] does not function.

Command	Description			
SPN (1000)	Servo motor speed	1000 [r/min]	a)	
STC (100)	Acceleration/deceleration time constant	1000 [ms]	b)	
STD (10)	S-pattern acceleration/deceleration time constant	10 [ms]	c)	-
MOV (2000) STOP	Absolute value travel command Program stop	$2000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	d)	

5. HOW TO USE THE PROGRAM

(b) Continuous travel commands (MOVA/MOVIA)

POINT

You cannot use a combination of "MOV" and "MOVIA" commands and a combination of "MOVI" and "MOVA" commands.

The "MOVA" command is a continuous travel command against the "MOV" command. Upon executing the travel command by the "MOV" command, the travel command by the "MOVA" command is executed continuously without a stop.
The varying speed point under the "MOVA" command is at the deceleration start position of the operation by the preceding "MOV" or "MOVA" command.
The acceleration/deceleration time constants of the "MOVA" command are set to the values at the execution of the preceding "MOV" command.
The "MOVIA" command is a continuous travel command against the "MOVI" command. Upon executing the travel command by the "MOVI" command, the travel command by the "MOVIA" command is executed continuously without a stop.
The varying speed point under the "MOVIA" command is at the deceleration start position of the operation by the preceding "MOVI" or "MOVIA" command.
The acceleration/deceleration time constants of the "MOVIA" command are set to the values at the execution of the preceding "MOVI" command.

Command	Name	Setting	Unit	Description
MOV	Absolute value travel command	MOV (Setting value)	$\times 10^{\text {STM } \mu \mathrm{m}}$	Absolute value travel command
MOVA	Absolute value continuous travel command	MOVA (Setting value)	$\times 10^{\text {STM } \mu \mathrm{m}}$	Absolute value continuous travel command
MOVI	Incremental value travel command	MOVI (Setting value)	$\times 10^{\text {STM } \mu \mathrm{m}}$	Incremental value travel command
MOVIA	Incremental value continuous travel command	MOVIA (Setting value)	$\times 10^{\text {STM } \mu \mathrm{m}}$	Incremental value continuous travel command

1) Program example 1

When using the absolute value travel command under the absolute value command method

Command	Description		
SPN (500)	Servo motor speed	$500[\mathrm{r} / \mathrm{min}]$	$\mathrm{a})$
STA (200)	Acceleration time constant	$200[\mathrm{~ms}]$	$\mathrm{b})$
STB (300)	Deceleration time constant	$300[\mathrm{~ms}]$	$\mathrm{c})$
MOV (500)	Absolute value travel command	$500\left[\times 10^{\mathrm{STM}} \mu \mathrm{m}\right]$	$\mathrm{d})$
SPN (1000)	Servo motor speed	$1000[\mathrm{r} / \mathrm{min}]$	$\mathrm{e})$
MOVA (1000)	Absolute value continuous travel	$1000\left[\times 10^{\mathrm{STM}} \mu \mathrm{m}\right]$	$\mathrm{f})$
MOVA (0)	command		
Absolute value continuous travel	$0\left[\times 10^{\mathrm{STM}} \mu \mathrm{m}\right]$	$\mathrm{g})$	
STOP	command		

5. HOW TO USE THE PROGRAM

2) Program example 2 (Incorrect usage)

For continuous operations, the acceleration time constant and the deceleration time constant cannot be changed at each change of the servo motor speed. Therefore, even if you insert an "STA", "STB", or "STD" command at a speed change, the command is invalid.

Command	Description			
SPN (500)	Servo motor speed	500 [r/min]	a)	
STA (200)	Acceleration time constant	200 [ms]	b)	
STB (300)	Deceleration time constant	300 [ms]	c)	
MOV (500)	Absolute value travel command	$500\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	d)	
SPN (1000)	Servo motor speed	1000 [r/min]	e)	
STC (500)	Acceleration/deceleration time constant	500 [ms]	f) Disabled	
MOVA (1000)	Absolute value continuous travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	g)	
SPN (1500)	Servo motor speed	1500 [r/min]	h) Disabled	
STC (100)	Acceleration/deceleration time constant	100 [ms]	i)	
MOVA (0)	Absolute value continuous travel command	$0\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	j)	
STOP	Program stop			

(c) Input/output commands (OUTON/OUTOF) and trip point commands (TRIP/TRIPI)

POINT

Using [Pr. PT23] to [Pr. PT25], you can set the time until OUT1 (Program output 1) to OUT3 (Program output 3) are switched off. The commands are switched off under the following conditions.

- The commands are switched off by the OUTOF command.
- The commands are switched off by a program stop.
-The "TRIP" and "TRIPI" commands have the following restrictions.
- The "MOV" or "MOVA" command cannot be used in combination with the "TRIPI" command.
- The "MOVI" or "MOVIA" command cannot be used in combination with the "TRIP" command.
- The "TRIP" and "TRIPI" commands do not execute the next step until the servo motor passes the set address or travel distance. Set the commands within the travel command range.
- Determine whether the servo motor has passed the set address or travel distance by checking the actual position (for each command). Additionally, determine whether the servo motor has passed the set address or travel distance by checking both edges of the address increasing/decreasing directions.

1) Program example 1

OUT1 (Program output 1) is switched on upon a program execution. When the program ends, OUT1 (Program output 1) is switched off.

Command		Description	
SPN (1000)	Servo motor speed	$1000[\mathrm{r} / \mathrm{min}]$	
STA (200)	Acceleration time constant	$200[\mathrm{~ms}]$	
STB (300)	Deceleration time constant	$300[\mathrm{~ms}]$	
MOV (500)	Absolute value travel command	$500\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
OUTON (1)	Switch on OUT1 (Program output 1).		a)
TIM (100)	Dwell	$100[\mathrm{~ms}]$	
MOV (250)	Absolute value travel command	$250\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
TIM (50)	Dwell	$50[\mathrm{~ms}]$	b)
STOP	Program stop		

5. HOW TO USE THE PROGRAM

2) Program example 2

Using [Pr. PT23] to [Pr. PT25], you can switch off OUT1 (Program output 1) to OUT3 (Program output 3) automatically.

Parameter	Name	Setting value	Description
Pr. PT23	OUT1 output setting time	20	Switch off OUT1 200 [ms] later. a)
Pr. PT24	OUT2 output setting time	10	Switch off OUT2 100 [ms] later. b)
Pr. PT25	OUT3 output setting time	50	Switch off OUT3 500 [ms] later. c)

Command		Description
SPN (500)	Servo motor speed	$500[\mathrm{r} / \mathrm{min}]$
STA (200)	Acceleration time constant	$200[\mathrm{~ms}]$
STB (300)	Deceleration time constant	$300[\mathrm{~ms}]$
MOV (1000)	Absolute value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$
OUTON (1)	Switch on OUT1 (Program output 1).	
OUTON (2)	Switch on OUT2 (Program output 2).	
OUTON (3)	Switch on OUT3 (Program output 3).	
STOP	Program stop	

Forward rotation
Servo motor speed $0 \mathrm{r} / \mathrm{min}$
Reverse rotation

OUT1
(Program output 1)
OUT2
(Program output 2)

OUT3
(Program output 3)

3) Program example 3

When setting the position address where the "OUTON" or "OUTOF" command is executed by using the "TRIP" or "TRIPI" command

Command	Description		
SPN (1000)	Servo motor speed	1000 [r/min]	
STA (200)	Acceleration time constant	200 [ms]	
STB (300)	Deceleration time constant	300 [ms]	
MOV (500)	Absolute value travel command	$500\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
TRIP (250)	Absolute value trip point specification	$250\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	a)
OUTON (2)	Switch on OUT2 (Program output 2).		b)
TRIP (400)	Absolute value trip point specification	$400\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	c)
OUTOF (2)	Switch off OUT2 (Program output 2).		d)
TIM (100)	Dwell	100 [ms]	
MOVI (500)	Incremental value travel command	$500\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
TRIPI (300)	Incremental value trip point specification	$300\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	e)
OUTON (2)	Switch on OUT2 (Program output 2).		f)
STOP	Program stop		g)

4) Program example 4

Command	Description		
SPN (500)	Servo motor speed	500 [r/min]	
STA (200)	Acceleration time constant	200 [ms]	
STB (300)	Deceleration time constant	300 [ms]	
MOVI (600)	Incremental value travel command	$600\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	a)
TRIPI (300)	Incremental value trip point specification	$300\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	b)
OUTON (3)	Switch on OUT3 (Program output 3).		c)
SPN (700)	Servo motor speed	700 [r/min]	
MOVIA (700)	Incremental value continuous travel command	$700\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	d)
TRIPI (300)	Incremental value trip point specification	$300\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	e)
$\begin{aligned} & \text { OUTOF (3) } \\ & \text { STOP } \end{aligned}$	Switch off OUT3 (Program output 3). Program stop		f)

(d) Dwell (TIM)

Using the "TIM (setting value)" command, set the time from when the remaining distance under the command is " 0 " until when the next step is executed.
The following shows operation examples of using this command in combination with the other commands for reference.

1) Program example 1

Command		Description	
TIM (200)	Dwell	$200[\mathrm{~ms}]$	a)
SPN (1000)	Servo motor speed	$1000[\mathrm{r} / \mathrm{min}]$	
STC (20)	Acceleration/deceleration time	$20[\mathrm{~ms}]$	
MOV (1000)	lonstant	Absolute value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$
STOP	Program stop		

5. HOW TO USE THE PROGRAM

2) Program example 2

Command		Description	
SPN (1000)	Servo motor speed	$1000[\mathrm{r} / \mathrm{min}]$	
STC (20)	Acceleration/deceleration time	$20[\mathrm{~ms}]$	
	constant		
MOVI (1000)	Incremental value travel command	$1000\left[\times 10^{\mathrm{STM}} \mu \mathrm{m}\right]$	
TIM (200)	Dwell	$200[\mathrm{~ms}]$	a)
OUTON (1)	Switch on OUT1 (Program output 1).		b)
MOVI (500)	Incremental value travel command	$500\left[\times 10^{\mathrm{STM}} \mu \mathrm{m}\right]$	
STOP	Program stop		

3) Program example 3

Command		Description	
SPN (1000)	Servo motor speed	$1000[\mathrm{r} / \mathrm{min}]$	
STC (20)	Acceleration/deceleration time	$20[\mathrm{~ms}]$	
	constant		
MOVI (1000)	Incremental value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
OUTON (1)	Switch on OUT1 (Program output 1).		a)
TIM (200)	Dwell	$200[\mathrm{~ms}]$	b)
MOVI (500)	Incremental value travel command	$500\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
STOP	Program stop		

4) Program example 4

Command		Description	
SPN (1000)	Servo motor speed	$1000[\mathrm{r} / \mathrm{min}]$	
STC (20)	Acceleration/deceleration time	$20[\mathrm{~ms}]$	
	constant		
MOVI (1000)	Incremental value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
TIM (200)	Dwell	$200[\mathrm{~ms}]$	a)
OUTON (1)	Switch on OUT1 (Program output 1).		b)
TIM (300)	Dwell	$300[\mathrm{~ms}]$	c)
MOVI (500)	Incremental value travel command	$500\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
STOP	Program stop		

5) Program example 5

Command		Description	
SPN (1000)	Servo motor speed	$1000[\mathrm{r} / \mathrm{min}]$	
STC (20)	Acceleration/deceleration time	$20[\mathrm{~ms}]$	
	constant		
MOVI (1000)	Incremental value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
TIM (200)	Dwell	$200[\mathrm{~ms}]$	a)
SYNC (1)	Suspend the step until PI1 (Program input) is switched on.		
MOVI (500)	Incremental value travel command	$500\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
STOP	Program stop		

a) Accepts PI1 after 200 ms .
6) Program example 6

Command		Description	
SPN (1000)	Servo motor speed	$1000[\mathrm{r} / \mathrm{min}]$	
STC (20)	Acceleration/deceleration time	$20[\mathrm{~ms}]$	
	constant		
MOVI (1000)	Incremental value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
SYNC (1)	Suspend the step until PI1 (Program input) is switched on.		
TIM (200)	Dwell	$200[\mathrm{~ms}]$	a)
MOVI (500)	Incremental value travel command	$500\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
STOP	Program stop		

(e) Interrupt positioning (ITP)

POINT
OFor positioning with the "ITP" command, the stop position varies depending on the servo motor speed when the "ITP" command becomes enabled.
Oln the following cases, the program does not execute the "ITP" command and proceeds to the next step.

- When the setting value of the "ITP" command is smaller than that of the travel command set by the "MOV", "MOVI", or "MOVA" command
- When the remaining distance under the "ITP" command is equal to or less than the travel distance under the "ITP" command
- While the servo motor decelerates

When an "ITP" command is used in the program, starting from the position where PI1 (Program input 1) to PI3 (Program input 3) are switched on, the servo motor rotates a distance of the set value and stops.
When using the "ITP" command, make sure to position the command preceding a "SYNC" command.

1) Program example 1

Command	Description		
SPN (500)	Servo motor speed	$500[\mathrm{r} / \mathrm{min}]$	
STA (200)	Acceleration time constant	$200[\mathrm{~ms}]$	
STB (300)	Deceleration time constant	$300[\mathrm{~ms}]$	
MOV (600)	Absolute value travel command	$600\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
SPN (100)	Servo motor speed	$100[\mathrm{r} / \mathrm{min}]$	
MOVA (600)	Continuous travel command	$600\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
SYNC (1)	Suspend the step until PI1 (Program input) is switched on.	a)	
ITP (200)	Interrupt positioning	$200\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	b)
STOP	Program stop		

2) Program example 2

When the travel distance set by the "ITP" command is smaller than the travel distance required for deceleration, the actual deceleration time constant becomes smaller than the setting value of the "STB" command.

Command	Description		
SPN (500)	Servo motor speed	$500[\mathrm{r} / \mathrm{min}]$	
STA (200)	Acceleration time constant	$200[\mathrm{~ms}]$	
STB (300)	Deceleration time constant	$300[\mathrm{~ms}]$	
MOV (1000)	Absolute value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
SYNC (1)	Suspend the step until PI1 (Program input) is switched on.	a)	
ITP (50)	Interrupt positioning	$50\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	b)
STOP	Program stop		

5. HOW TO USE THE PROGRAM

(f) External pulse count (COUNT)

When the number of input pulses of the manual pulse generator becomes larger than the value set for the "COUNT" command, the next step is executed. Setting " 0 " clears cumulative input pulses.

Command	Description	
COUNT (500)	Wait for the next step until the number of input pulses of the manual pulse generator reaches 500	
	[pulse]. a)	
SPN (500)	Servo motor speed	$500[\mathrm{r} / \mathrm{min}]$
STA (200)	Acceleration time constant	$200[\mathrm{~ms}]$
STB (300)	Deceleration time constant	$300[\mathrm{~ms}]$
MOV (1000)	Absolute value travel command	$1000\left[\times 10^{\mathrm{STM}} \mu \mathrm{m}\right]$
TRIP (500)	Trip point specification	$500\left[\times 10^{\mathrm{STM}} \mu \mathrm{m}\right]$
COUNT (0)	Clear cumulative input pulses.	
STOP	Program stop	b)

5. HOW TO USE THE PROGRAM

(g) Step repeat command (FOR...NEXT)

POINT

You cannot insert "FOR...NEXT" commands between a "FOR" command and a "NEXT" command.

The servo motor repeats the operation of the steps, which are set between a "FOR (Setting value) command and a "NEXT" command, the number of set times. Setting " 0 " repeats the steps endlessly. For how to stop the program, which the steps have been repeated endlessly in, refer to section 5.2.4 (4).

Command	Description		
SPN (1000)	Servo motor speed	1000 [r/min]	
STC (20)	Acceleration/deceleration time constant	20 [ms]	
MOV (1000)	Absolute value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
TIM (100)	Dwell	100 [ms]	
FOR (3)	Start of step repeat command	3 [time]	a)
MOVI (100)	Incremental value travel command	$100\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	b)
TIM (100)	Dwell	100 [ms]	
NEXT	End of step repeat command		c)
FOR (2)	Start of step repeat command	2 [time]	d)
MOVI (200)	Incremental value travel command	$200\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	e)
TIM (100)	Dwell	100 [ms]	
NEXT	End of step repeat command		f)
STOP	Program stop		

5. HOW TO USE THE PROGRAM

(h) Number of program executions command (TIMES)

By setting the number of program executions for the "TIMES (Setting value)" command, which is positioned at the start of the program, you can repeat the execution of the program. To execute the program one time, the "TIMES" command is not required. Setting " 0 " repeats the program endlessly. For how to stop the program, which has been repeated endlessly, refer to section 5.2.4 (4).

Command		Description	
TIMES (2)	Number of program executions lommand	$2[t i m e]$	a)
SPN (1000)	Servo motor speed	$1000[\mathrm{r} / \mathrm{min}]$	
STC (20)	Acceleration/deceleration time	$20[\mathrm{~ms}]$	
constant			
MOVI (1000)	Incremental value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	b)
TIM (100)	Dwell	$100[\mathrm{~ms}]$	
STOP	Program stop		

5. HOW TO USE THE PROGRAM

(i) Current position latch (LPOS)

POINT

When the current position is stored using LPS (Current position latch input), the value varies depending on the servo motor speed at switch-on of LPS.

- The program does not proceeds to the next step until LPS (Current position latch input) is switched on.
The stored data is not cleared without power-off of the servo amplifier.
- After the input of LPS (Current position latch input) becomes valid by the "LPOS" command, the input is cleared in the following conditions.
- When the rising edge of LPS (Current position latch input) is detected
- When the program ends
- When the operation mode is changed
- When the servo motor forcibly stops
- When an alarm occurs
- When the servo motor enters the servo-off status

The current position at switch-on of LPS (Current position latch input) is stored. The stored position data can be read with the communication function.
The current position latch function, which is set during the execution of the program, is reset when the program ends. The function is also reset at an operation mode change, forced stop, alarm occurrence, or servo-off. The function is not reset at a temporary stop only.

Command		Description	
SPN (500)	Servo motor speed	$500[\mathrm{r} / \mathrm{min}]$	
STA (200)	Acceleration time constant	$200[\mathrm{~ms}]$	
STB (300)	Deceleration time constant	$300[\mathrm{~ms}]$	
MOV (1000)	Absolute value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
LPOS	Set a current position latch.		a)
STOP	Program stop		

5. HOW TO USE THE PROGRAM

(j) Indirect specification with general purpose registers (R1 to R4, D1 to D4)

You can indirectly specify the setting values of the "SPN", "STA", "STB", "STC", "STD", "MOV", "MOVI", "MOVA", "MOVIA", "TIM", and "TIMES" commands.
The value, which is stored in each general purpose register (R1 to R4, D1 to D4), is used as the setting value of each command.
While the program is not executed by a communication command, you can change the general purpose registers by using MR Configurator2 or a communication command.
The data of the general purpose registers is erased at power-off of the servo amplifier. Note that you can store the data of the general purpose registers (R1 to R4) in EEP-ROM.
The setting range of each general purpose register is that of the command for which each register is used.
The following explains a case where the general purpose registers are set as shown below before the execution of the program.

General purpose register	Setting
R1	1000
R2	2000
D1	200
D2	300

Command		Description	
SPN (1000)	Servo motor speed	$1000[r / \mathrm{min}]$	a)
STA (D1)	Acceleration time constant	D1 $=200[\mathrm{~ms}]$	b)
STB (D2)	Deceleration time constant	D2 $=300[\mathrm{~ms}]$	c)
MOVI (R1)	Incremental value travel command	R1 $=1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	$\mathrm{d})$
TIM (100)	Dwell	$100[\mathrm{~ms}]$	$\mathrm{e})$
MOVI (R2)	Incremental value travel command	R2 $=2000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	f)
STOP	Program stop		

b) $\mathrm{D} 1=200 \mathrm{~ms}$
c) $\mathrm{D} 2=300 \mathrm{~ms}$
b) D1 $=200 \mathrm{~ms}$
c) $\mathrm{D} 2=300 \mathrm{~ms}$

5. HOW TO USE THE PROGRAM

(k) Home position return command (ZRT)

Perform a home position return.
Set the home position with a parameter. (Refer to section 5.4.)
With the "ZRT" command, the program proceeds to the next step after the home position return completion.

POINT

If the home position return has not completed successfully, [AL. 96 Home position return incomplete warning] occurs. In this case, the program proceeds to the next step without a stop. Since the home position return is incomplete, the travel command is invalid.

Command		Description	
SPN (500)	Servo motor speed	$500[\mathrm{r} / \mathrm{min}]$	a)
STA (200)	Acceleration time constant	$200[\mathrm{~ms}]$	b)
STB (300)	Deceleration time constant	$300[\mathrm{~ms}]$	c)
ZRT	Home position return		d)
MOV (500)	Absolute value travel command	$500\left[\times 10^{\mathrm{STM}} \mu \mathrm{m}\right]$	e)
STOP	Program stop		

Item	Used parameter	Setting
Dog type home position return	[Pr. PT04]	"_-_0"
Home position return direction	[Pr. PT04]	" _ 0 _" (Address increasing direction)
Dog input polarity	[Pr. PT29]	"_ _ _ 1" (Detects dog when DOG (proximity dog) is on.)
Home position return speed	[Pr. PT05]	100 [r/min]
Creep speed	[Pr. PT06]	50 [r/min]
Home position shift distance	[Pr. PT07]	$0\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$
Home position return acceleration time constant	[Pr. PC30]	100 [ms]
Home position return deceleration time constant	[Pr. PC31]	200 [ms]
Home position return position data	[Pr. PT08]	0

5. HOW TO USE THE PROGRAM

(I) Torque limit value switching (TLP/TLN/TQL)

Using the maximum torque as 100.0%, limit the generated torque of the servo motor.

1) Program example

Command	Description	
SPN (1500)	Servo motor speed 1500 [r/min]	
STA (100)	Acceleration time constant 100 [ms]	
STB (200)	Deceleration time constant 200 [ms]	
MOV (1000)	Absolute value travel command $\quad 1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
SYNC (1)	Suspend the step until PI1 (Program input) is switched on.	a)
TLP (800)	Forward rotation torque limit 800 [0.1\%]	b)
SYNC (2)	Suspend the step until PI2 (Program input) is switched on.	c)
TLN (500)	Reverse rotation torque limit 500 [0.1\%]	d)
TIM (100)	Dwell 100 [ms]	e)
MOV (500)	Absolute value travel command $1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	
SYNC (3)	Suspend the step until PI3 (Program input) is switched on.	f)
TQL (300)	Torque limit 300 [0.1\%]	g)
STOP	Program stop	h)

5. HOW TO USE THE PROGRAM

5.2.3 Basic settings of signals and parameters

(1) Parameter
(a) Setting range of the position data

The following shows the setting of [Pr. PA01].

Command method	Travel command	[Pr. PT01]			Position data input range
		Positioning command method	Position data unit		
Absolute value command method	Absolute value travel command ("MOV", "MOVA")	--- 0	- 0 _-	[mm]	-999999 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$
			- ${ }^{1}$ _-	[inch]	-999999 to $999999\left[\times 10^{(\text {STM }-4)}\right.$ inch]
			2-	[degree]	-360.000 to 360.000
			-3_-	[pulse]	-999999 to 999999
	Incremental value travel command ("MOVI", "MOVIA")		- ${ }^{1}$	[mm]	-999999 to 999999 [$\times 10^{\text {STM }} \mu \mathrm{m}$]
			-1--	[inch]	-999999 to $999999\left[\times 10^{(\text {STM }-4)}\right.$ inch] $]$
			-2_-	[degree]	-999.999 to 999.999
			-3_-	[pulse]	-999999 to 999999
Incremental value command method	Incremental value travel command ("MOVI", "MOVIA")	--- 1	0 _-	[mm]	-999999 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$
			- ${ }^{1}$ _-	[inch]	-999999 to $999999\left[\times 10^{(\text {STM-4) }}\right.$ inch]
			-2	[degree]	-999.999 to 999.999
			-3_-	[pulse]	-999999 to 999999

(b) Rotation direction selection/travel direction selection ([Pr. PA14])

Select the servo motor rotation direction when ST1 (Forward rotation start) is switched on.

[Pr. PA14] setting	Servo motor rotation direction when ST1 (Forward rotation start) is switched on
0	CCW rotation with + position data (Initial value)
1	CW rotation with - position data CCW rotation with + position data - position data

5. HOW TO USE THE PROGRAM

(c) Feed length multiplication ([Pr. PT03])

Set the feed length multiplication factor (STM) of the position data.

[Pr. PT03] setting	Position data input range			
	[mm]	[inch]	[degree] (Note)	[pulse] (Note)
$\begin{gathered} \text { (Initial value) } \end{gathered}$	-999.999 to 999.999	-99.9999 to 99.9999	-360.000 to 360.000	-999999 to 999999
- 1	-9999.99 to 9999.99	-999.999 to 999.999		
_-_2	-99999.9 to 99999.9	-9999.99 to 9999.99		
- 3	-999999 to 999999	-99999.9 to 99999.9		

Note. The feed length multiplication setting ([Pr. PT03]) is not applied to the unit multiplication factor. Adjust the unit multiplication factor in the electronic gear setting ([Pr. PA06] and [Pr. PA07]).
(2) Signal

Select a program with DIO to DI7 and switch on ST1 to perform the positioning operation according to the set program. At this time, ST2 (Reverse rotation start) is invalid.

Item	Used device	Setting
Program operation method selection	MD0 (Operation mode selection 1)	Switch on MD0.
	DI0 (Program No. selection 1) DI1 (Program No. selection 2) DI2 (Program No. selection 3) DI3 (Program No. selection 4) Program selection	
	DI4 (Program No. selection 5)	Refer to section 2.3 (1).
	DI5 (Program No. selection 6)	
	DI6 (Program No. selection 7)	
DI7 (Program No. selection 8)		
Start	ST1 (Forward rotation start)	Switch on ST1 to execute the program operation.

5. HOW TO USE THE PROGRAM

5.2.4 Timing chart of the program operation

(1) Operation condition

The following shows a timing chart when the program below is executed after the home position return completion under the absolute value command method.

Program No.	Description	
SPN (1000)	Servo motor speed 1000 [r/min]	
STC (100)	Acceleration/deceleration time 100 [ms] constant	
MOV (5000)	Absolute value travel command $\quad 5000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	Travel command 1
SYNC (1)	Suspend the step until PI1 (Program input) is switched on.	
STC (50)	Acceleration/deceleration time 50 [ms] constant	
MOV (7500)	Absolute value travel command $7500\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	Travel command 2
STOP	Program stop	

Program No.	Description	
SPN (1000)	Servo motor speed 1000 [r/min]	
STC (100)	Acceleration/deceleration time 100 [ms] constant	
MOV (2500)	Absolute value travel command $\quad 2500\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	Travel command 3
SYNC (1)	Suspend the step until PI1 (Program input) is switched on.	
STC (50)	Acceleration/deceleration time 50 [ms] constant	
MOV (5000)	Absolute value travel command $\quad 5000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	Travel command 4
STOP	Program stop	

(2) Timing chart

Note. The detection of external input signals is delayed by the set time in the input filter setting of [Pr. PD29]. Considering the output signal sequence from the controller and signal variations due to hardware, configure a sequence that changes the program selection earlier.

5. HOW TO USE THE PROGRAM

(3) Temporary stop/restart

When TSTP is switched on during the automatic operation, deceleration is performed using the deceleration time constant under the executing travel command to make a temporary stop. Then, switching off and then on TSTP (On-edge detection) restarts the operation for the remaining distance. This function will not operate even if ST1 (Forward rotation start) is switched on during the temporary stop. When the operation mode is changed from the automatic mode to the manual mode during the temporary stop, the remaining travel distance is cleared and the program ends. Switching on TSTP again will not restart the program. To start the program, switch on ST1 (Forward rotation start) again. The temporary stop/restart input does not function during a home position return or JOG operation. The timing chart is the same as that of the point table operation mode. Refer to 4.2 .2 (3) (e).
(4) How to stop the program

To stop the executing program, switch on TSTP (Temporary stop/restart) to stop the positioning operation, and then switch on CR (Clear). At this time, the remaining distance under the command is cleared, and the program ends.
Switching on TSTP again will not restart the positioning operation.
To start the program, switch on ST1 (Forward rotation start) again.
(5) Program termination condition

The following shows the conditions for terminating the executing program.

Termination condition	Restart condition
Execution of STOP (Program stop)	Switch on ST1 (Forward rotation start). The program starts from the beginning.
When switching the automatic operation mode to the manual operation mode	After switching the mode to the automatic operation mode, switch on ST1. The program starts from the beginning.
When the hardware stroke limit is detected	After LSP and LSN are switched on, switch on ST1. The program starts from the beginning.
When the software stroke limit is detected ([Pr. PT15] to [Pr. PT18])	After the machine travels to the software stroke limit range, switch on ST1. The program starts from the beginning.
At base circuit shut-off	After resetting the base circuit shut-off, switch on ST1. The program starts from the beginning.

5. HOW TO USE THE PROGRAM

5.3 Manual operation mode

For the machine adjustment, home position adjustment, and others, you can shift the position to any position with a JOG operation or manual pulse generator.

5.3.1 JOG operation

(1) Setting

According to the purpose of use, set input signals and parameters as shown below. In this case, DIO (Program No. selection 1) to DI7 (Program No. selection 8) are invalid.

Item	Used device/parameter	Setting
Manual operation mode selection	MD0 (Operation mode selection 1)	Switch off MD0.
Servo motor rotation direction	[Pr. PA14]	Refer to (2) of this section.
JOG speed	[Pr. PT13]	Set the servo motor speed.
Acceleration time constant	[Pr. PC01]	Set the acceleration time constant.
Deceleration time constant	[Pr. PC02]	Set the deceleration time constant.
S-pattern acceleration/deceleration time constant	[Pr. PC03]	Set the S-pattern acceleration/deceleration time constants.

(2) Servo motor rotation direction

[Pr. PA14] setting	Servo motor rotation direction	
	ST1 (Forward rotation start) on	ST2 (Reverse rotation start) on
	CCW rotation	CW rotation
1	CW rotation	CCW rotation

$$
[P r . \operatorname{PA} 14]=0
$$

$$
\text { [Pr. PA14] = } 1
$$

(3) Operation

When ST1 is switched on, the servo motor rotates using the JOG speed set in [Pr. PT13] and the acceleration/deceleration constants set with [Pr. PC02] and [Pr. PC03]. For the rotation direction, refer to (2) of this section. Switching on ST2 rotates the servo motor opposite to the direction of ST1 (Forward rotation start).

5. HOW TO USE THE PROGRAM

(4) Timing chart

5.3.2 Manual pulse generator operation

(1) Setting

POINT

To enhance noise immunity, set "_ 2_ _" to [Pr. PA13] when the command pulse frequency is 500 kpulse/s or less, or set "_ 3 _ _" to [Pr. PA13] when the command pulse frequency is 200 kpulse/s or less.

According to the purpose of use, set input signals and parameters as shown below. In this case, DIO (Program No. selection 1) to DI7 (Program No. selection 8) are invalid.

Item	Setting method	Setting
Manual operation mode selection	MD0 (Operation mode selection 1)	Switch off MD0.
Manual pulse generator multiplication	[Pr. PT03]	Set the multiplication factor for the pulses generated from the manual pulse generator. For details, refer to (3) of this section.
Servo motor rotation direction	[Pr. PA14]	Refer to (2) of this section.
Command input pulse train input form	[Pr. PA13]	Set "_-_2" (A/B-phase pulse train).
Pulse train filter selection	[Pr. PA13]	Set other than "_0__" and "_1__".

5. HOW TO USE THE PROGRAM

(2) Servo motor rotation direction

[Pr. PA14] setting	Servo motor rotation direction	
	Manual pulse generator operation: forward rotation	Manual pulse generator operation: reverse rotation
	CCW rotation	CW rotation
1	CW rotation	CCW rotation

(3) Manual pulse generator multiplication
(a) Setting with input signals

In "Device setting" of MR Configurator2, set TP0 (Manual pulse generator multiplication 1) and TP1
(Manual pulse generator multiplication 2) for input signals.

TP1 (Pulse generator multiplication 2) (Note)	TP0 (Pulse generator multiplication 1) (Note)	Servo motor rotation multiplication to manual pulse generator rotation amount	Travel distance			
			[mm]	[inch]	[degree]	[pulse]
0	0	[Pr. PT03] setting valid				
0	1	1 time	0.001	0.0001	0.001	1
1	0	10 times	0.01	0.001	0.01	10
1	1	100 times	0.1	0.01	0.1	100

Note. 0: Off
1: On
(b) Setting with a parameter

Using [Pr. PT03], set the servo motor rotation multiplication factor for the rotation amount of the manual pulse generator.

[Pr. PT03] setting	Servo motor rotation multiplication to manual pulse generator rotation amount	Travel distance			
		[mm]	[inch]	[degree]	[pulse]
- 0 _	1 time	0.001	0.0001	0.001	1
- ${ }^{1}$	10 times	0.01	0.001	0.01	10
-- ${ }^{2}$	100 times	0.1	0.01	0.1	100

(4) Operation

Turning the manual pulse generator rotates the servo motor. For the rotation direction of the servo motor, refer to (2) of this section.

POINT
-Before performing the home position return, make sure that the limit switch operates.

- Check the home position return direction. An incorrect setting will cause a reverse running.
- In the following cases, make sure that the Z-phase has been passed through once before performing a home position return.
- When an incremental linear encoder is used in the linear servo motor control mode
- When an incremental external encoder is used in the fully closed loop control mode
- When a servo amplifier is used in the DD motor control mode

Z-phase unpassed will trigger [AL. 90.5 Home position return incomplete warning].
-For servo amplifiers with software version B6 or earlier, the dog type last Zphase reference home return and dogless Z-phase reference home position return cannot be used in the following operation modes.

- Fully closed loop control mode using an incremental linear encoder
- Linear servo motor control mode using an incremental linear encoder
- Direct drive motor control mode

Setting [Pr. PT04 Home position return type] to "__ 8" or "___A" will trigger [AL. 37 Parameter error].

5.4.1 Summary of home position return

A home position return is performed to match the command coordinates with the machine coordinates. Under the incremental method, each power-on of the input power supply requires the home position return. In the absolute position detection system, once you have performed the home position return at machine installation, the current position will be retained even if the power supply is shut off. Therefore, the home position return is unnecessary when the power supply is switched on again.
This section shows the home position return methods of the servo amplifier. Select the optimum method according to the configuration and uses of the machine.
This servo amplifier has the home position return automatic retract function. When the machine stops beyond or on a proximity dog, this function automatically moves the machine back to the proper position to perform the home position return. Manually moving the machine by the JOG operation or others is unnecessary.

5. HOW TO USE THE PROGRAM

(1) Home position return type

Select the optimum home position return type according to the machine type or others.

Type	Home position return method	Feature
Dog type	Deceleration starts at the front end of a proximity dog. After the rear end is passed, the position specified by the first Z-phase signal or the position of the first Z-phase signal shifted by the specified home position shift distance is used as the home position. The servo amplifier internally recognizes the Z-phase signal one time per servo motor revolution. The Z-phase signal cannot be used as an output signal.	- General home position return method using a proximity dog - The repeatability of the home position return is high. - The machine is less loaded. - Used when the width of the proximity dog can be set equal to or greater than the deceleration distance of the servo motor.
Count type	Deceleration starts at the front end of a proximity dog. After the rear end is passed, the position is shifted by the travel distance. Then, the position specified by the first Zphase signal or the position of the Z-phase signal shifted by the specified home position shift distance is used as the home position.	- Home position return method using a proximity dog - Used to minimize the length of the proximity dog.
Data set type	The position shifted by any distance manually is used as the home position.	- No proximity dog is required.
Stopper type	A workpiece is pressed against a mechanical stopper, and the position where it is stopped is used as the home position.	- Since the workpiece collides with the mechanical stopper, the home position return speed must be low enough. - The strength of the machine and stopper must be increased.
Home position ignorance (servo-on position as home position)	The position at servo-on is used as the home position.	
Dog type rear end reference	Deceleration starts at the front end of a proximity dog. After the rear end is passed, the position is shifted by the travel distance after proximity dog and the home position shift distance. The position after the shifts is used as the home position.	- The Z-phase signal is not required.
Count type front end reference	Deceleration starts at the front end of a proximity dog. The position is shifted by the travel distance after proximity dog and the home position shift distance. The position after the shifts is used as the home position.	- The Z-phase signal is not required.
Dog cradle type	After the front end of a proximity dog is detected, the position specified by the first Z-phase signal is used as the home position.	
Dog type last Z-phase reference	After the front end of a proximity dog is detected, the position is shifted away from the proximity dog in the reverse direction. Then, the position specified by the first Zphase signal or the position of the first Zphase signal shifted by the home position shift distance is used as the home position.	
Dog type front end reference	Starting from the front end of a proximity dog, the position is shifted by the travel distance after proximity dog and the home position shift distance. The position after the shifts is used as the home position.	- The Z-phase signal is not required.
Dogless Z-phase reference	The position specified by the first Z-phase signal, or the position of the first Z-phase signal shifted by the home position shift distance is used as the home position.	

5. HOW TO USE THE PROGRAM

(2) Parameters for home position return

To perform the home position return, set each parameter as follows.
(a) Select the home position return type with [Pr. PT04 Home position return type].

(b) Select the starting direction for the home position return with [Pr. PT04 Home position return type]. Setting "0" starts the home position return in the address increase direction from the current position. Setting "1" starts the home position return in the address decrease direction from the current position.

(c) Select the polarity where the proximity dog is detected with the DOG (Proximity dog) polarity selection of [Pr. PT29 Function selection T-3]. Setting "0" detects the dog when DOG (Proximity dog) is off. Setting "1" detects the dog when DOG (Proximity dog) is on.

(3) Program

Select a program containing a "ZRT" command, which performs the home position return.

5. HOW TO USE THE PROGRAM

5.4.2 Dog type home position return

This is a home position return method using a proximity dog. Deceleration starts at the front end of the proximity dog. After the rear end is passed, the position specified by the first Z-phase signal, or the position of the first Z-phase signal shifted by the specified home position shift distance is used as the home position.
(1) Device/parameter

Set input devices and parameters as shown below.

Item	Used device/parameter	Setting
Automatic operation mode of the program method	MD0 (Operation mode selection 1)	Switch on MD0.
Dog type home position return	[Pr. PT04]	[Pr. phase reference).
Home position return direction	[Pr. PT29]	Refer to (2) of section 5.4.1 to select the home position return direction.
Dog input polarity	[Pr. PT05]	Refer to (2) of section 5.4.1 to select the dog input polarity.
Home position return speed	Set the rotation speed specified until a dog is detected.	
Creep speed	[Pr. PT06]	Set the rotation speed specified after a dog is detected.
Home position shift distance	[Pr. PT07]	Set this item to shift the home position, which is specified by the first Z-phase signal after the rear end of a proximity dog is passed.
Home position return acceleration time constant	[Pr. PC30]	The acceleration time constant set for [Pr. PC30] is used.
Home position return deceleration time constant	[Pr. PC31]	The deceleration time constant set for [Pr. PC31] is used.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.
Program	DI0 (Program No. selection 1) to DI7 (Program No. selection 8)	Select a program containing a "ZRT" command, which performs the home position return.

(2) Length of the proximity dog

To generate the Z-phase signal of the servo motor during the detection of DOG (Proximity dog), set the length of the proximity dog that satisfies equations (5.1) and (5.2).
$\mathrm{L}_{1} \geq \frac{\mathrm{V}}{60} \cdot \frac{\mathrm{td}}{2}$.
L_{1} : Length of the proximity dog [mm]
V: Home position return speed [$\mathrm{mm} / \mathrm{min}$]
td: Deceleration time [s]
$\mathrm{L}_{2} \geq 2 \cdot \Delta \mathrm{~S}$
L_{2} : Length of the proximity dog [mm]
$\Delta \mathrm{S}$: Travel distance per servo motor revolution [mm]

5. HOW TO USE THE PROGRAM

(3) Timing chart

The following shows a timing chart after a program containing a "ZRT" command is selected.

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.
(4) Adjustment

For the dog type home position return, adjust the setting so that the Z-phase signal is always generated during the detection of a dog. Make an adjustment so that the rear end of DOG (Proximity dog) is positioned almost at the center between the position specified by a Z-phase signal and the position specified by the next Z-phase signal.
The generation position of the Z-phase signal can be checked with "Position within one-revolution" of "Status Display" on MR Configurator2.

5. HOW TO USE THE PROGRAM

5.4.3 Count type home position return

For the count type home position return, after the front end of a proximity dog is detected, the position is shifted by the distance set for [Pr. PT09 Travel distance after proximity dog]. Then, the position specified by the first Z-phase signal is used as the home position. Therefore, when the on time of DOG (Proximity dog) is 10 ms or more, the length of the proximity dog has no restrictions. Use the count type home position return when you cannot use the dog type home position return because the length of the proximity dog cannot be reserved, when you input DOG (Proximity dog) electrically from the controller, or other cases.
(1) Device/parameter

Set input devices and parameters as shown below.

Item	Used device/parameter	Setting
Automatic operation mode of the program method	MD0 (Operation mode selection 1)	Switch on MD0.
Count type home position return	[Pr. PT04]	Z-- 1: Select the count type (front end detection Z-phase reference).
Home position return direction	[Pr. PT04]	Refer to (2) of section 5.4.1 to select the home position return direction.
Dog input polarity	[Pr. PT29]	Refer to (2) of section 5.4.1 to select the dog input polarity.
Home position return speed	[Pr. PT05]	Set the rotation speed specified until a dog is detected.
Creep speed	Set the rotation speed specified after a dog is detected.	
Home position shift distance	[Pr. PT07]	After the front end of a proximity dog is passed, the position is shifted by the travel distance and then is specified by the first Z-phase signal. Set this item to shift the position of the first Z-phase signal.
Travel distance after proximity dog	[Pr. PT09]	Set the travel distance specified after the front end of the proximity dog is passed.
Home position return acceleration time constant	[Pr. PC30]	The acceleration time constant set for [Pr. PC30] is used.
Home position return deceleration time constant	[Pr. PC31]	The deceleration time constant set for [Pr. PC31] is used.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.
Program	Sel1 (Program No. selection 1) to which performs the home position return.	
DI7 (Program No. selection 8)		

5. HOW TO USE THE PROGRAM

(2) Timing chart

The following shows a timing chart after a program containing a "ZRT" command is selected.

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

5. HOW TO USE THE PROGRAM

5.4.4 Data set type home position return

To specify any position as the home position, use the data set type home position return. To shift the position, you can use the JOG operation, the manual pulse generator operation, or others. The data set type home position return is available at servo-on only.
(1) Device/parameter

Set input devices and parameters as shown below.

Item	Used device/parameter	Setting
Automatic operation mode of the program method	MD0 (Operation mode selection 1)	Switch on MD0.
Data set type home position return	[Pr. PT04]	--- 2: Select the data set type.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.
Program	DI1 (Program No. selection 1) to DI7 (Program No. selection 8)	Select a program containing a "ZRT" command, which performs the home position return.

(2) Timing chart

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

5. HOW TO USE THE PROGRAM

5.4.5 Stopper type home position return

For the stopper type home position return, by using the JOG operation, manual pulse generator operation, or others, a workpiece is pressed against a mechanical stopper, and the position where it is stopped is used as the home position.
(1) Device/parameter

Set input devices and parameters as shown below.

Item	Used device/parameter	Setting
Automatic operation mode of the program method	MD0 (Operation mode selection 1)	Switch on MD0.
Stopper type home position return	[Pr. PT04]	[Pr. PT04]
Home position return direction	[Pr. PT05]	Refer to (2) of section 5.4.1 to select the home position return direction.
Home position return speed	Set the rotation speed until the workpiece is pressed against the mechanical stopper.	
Stopper time	Set the time from when the home position data is obtained after the workpiece is pressed against the stopper until when ZP (home position return completion) is outputted.	
Stopper type home position return torque limit value	[Pr. PT11]	Set the servo motor torque limit value at the execution of the stopper type home position return.
Home position return acceleration time constant	[Pr. PC30]	The acceleration time constant set for [Pr. PC30] is used.
Home position return deceleration time constant	[Pr. PC31]	The deceleration time constant set for [Pr. PC31] is used.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.
Program	DI1 (Program No. selection 1) to DI7 (Program No. selection 8)	Select a program containing a "ZRT" command, which performs the home position return.

(2) Timing chart

The following shows a timing chart after a program containing a "ZRT" command is selected.

Note. The following torque limits are enabled.

5. HOW TO USE THE PROGRAM

Input device (0: Off, 1: On)		Limit value status			Enabled torque limit value
TL1	TL				
0	0				Pr. PT11
0	1	TLA	>	Pr. PT11	Pr. PT11
		TLA	<	Pr. PT11	TLA
1	0	Pr. PC35	>	Pr. PT11	Pr. PT11
		Pr. PC35	<	Pr. PT11	Pr. PC35
1	1	TLA	>	Pr. PT11	Pr. PT11
		TLA	<	Pr. PT11	TLA

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.
5.4.6 Home position ignorance (servo-on position as home position)

POINT

To perform a home position return by using the home position ignorance, selecting a program containing a "ZRT" command is not required.

The position at servo-on is used as the home position.
(1) Device/parameter

Set input devices and parameters as shown below.

Item	Used device/parameter	Setting
Home position ignorance	[Pr. PT04]	$---4:$ Select the home position ignorance (servo-on position as home position).
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.

(2) Timing chart

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

5. HOW TO USE THE PROGRAM

5.4.7 Dog type rear end reference home position return

POINT

This home position return method depends on the timing of reading DOG (Proximity dog) that has detected the rear end of a proximity dog. Therefore, when a home position return is performed at a creep speed of $100 \mathrm{r} / \mathrm{min}$, the home position has an error of 6400 pulses (for HG series servo motor). The higher the creep speed, the greater the error of the home position.

Deceleration starts at the front end of a proximity dog. After the rear end is passed, the position is shifted by the travel distance after proximity dog and the home position shift distance. The position after the shifts is used as the home position. The home position return is available independently of the Z-phase signal.
(1) Device/parameter

Set input devices and parameters as shown below.

Item	Used device/parameter	Setting
Automatic operation mode of the program method	MD0 (Operation mode selection 1)	Switch on MD0.
Dog type rear end reference home position return	[Pr. PT04]	[Pr. PT04] detection/rear end reference).
Home position return direction	[Pr. PT29]	Refer to (2) of section 5.4.1 to select the home position return direction.
Dog input polarity	[Pr. PT05]	Refer to (2) of section 5.4.1 to select the dog input polarity.
Home position return speed	Set the rotation speed specified until a dog is detected.	
Creep speed	[Pr. PT07]	Set the rotation speed specified after a dog is detected.
Home position shift distance	Set this item to shift the home position, which is specified after the rear end of a proximity dog is passed.	
Travel distance after proximity dog	[Pr. PT09]	Set the travel distance specified after the rear end of a proximity dog is passed.
Home position return acceleration time constant	[Pr. PC30]	The acceleration time constant set for [Pr. PC30] is used.
Home position return deceleration time constant	[Pr. PC31]	The deceleration time constant set for [Pr. PC31] is used.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.
Program (Program No. selection 1) to	Select a program containing a "ZRT" command, which performs the home position return.	

5. HOW TO USE THE PROGRAM

(2) Timing chart

The following shows a timing chart after a program containing a "ZRT" command is selected.

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

5. HOW TO USE THE PROGRAM

5.4.8 Count type front end reference home position return

POINT

This home position return method depends on the timing of reading DOG (Proximity dog) that has detected the front end of a proximity dog. Therefore, when a home position return is performed at a creep speed of $100 \mathrm{r} / \mathrm{min}$, the home position has an error of 6400 pulses (for HG series servo motor). The higher the creep speed, the greater the error of the home position.
After the front end of a proximity dog is detected, when a home position return ends without reaching the creep speed, [AL. 90.2] occurs. Set the travel distance after proximity dog and the home position shift distance enough for deceleration from the home position return speed to the creep speed.
(1) Device/parameter

Set input devices and parameters as shown below.

Item	Used device/parameter	
Automatic operation mode of the program method	MD0 (Operation mode selection 1)	Switch on MD0.
Count type front end reference home position return	[Pr. PT04]	
Home position return direction	[Pr. PT04]	ST- front end reference).
Dog input polarity	[Pr. PT29]	Refer to (2) of section 5.4.1 to select the home position return direction.
Home position return speed	[Pr. PT05]	Refer to (2) of section 5.4.1 to select the dog input polarity.
Creep speed	Set the rotation speed specified until a dog is detected.	
Home position shift distance	[Pr. PT07]	Set the rotation speed specified after a dog is detected.
Travel distance after proximity dog	[Pr. PT09]	Set this to shift the home position, which is specified after the front end of a proximity dog is passed.
Home position return acceleration time constant	[Pr. PC30]	Set the travel distance specified after the front end of the proximity dog is passed.
Home position return deceleration time constant	[Pr. PC31]	The acceleration time constant set for [Pr. PC30] is used.
Home position return position data	[Pr. PT08]	The deceleration time constant set for [Pr. PC31] is used.
Program	Set the current position at the home position return completion.	
DI7 (Program No. selection 1) to	Select a program containing a "ZRT" command, which performs the home position return.	

5. HOW TO USE THE PROGRAM

(2) Timing chart

The following shows a timing chart after a program containing a "ZRT" command is selected.

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

5. HOW TO USE THE PROGRAM

5.4.9 Dog cradle type home position return

You can use the position, which is specified by the first Z-phase signal after the front end of a proximity dog is detected, as the home position.
(1) Device/parameter

Set input devices and parameters as shown below.

Item	Used device/parameter	Setting
Automatic operation mode of the program method	MD0 (Operation mode selection 1)	Switch on MD0.
Dog cradle type home position return	[Pr. PT04]	$---7:$ Select the dog cradle type.
Home position return direction	[Pr. PT04]	Refer to (2) of section 5.4.1 to select the home position return direction.
Dog input polarity	[Pr. PT29]	Refer to (2) of section 5.4.1 to select the dog input polarity.
Home position return speed	[Pr. PT05]	Set the rotation speed specified until a dog is detected.
Creep speed	[Pr. PT06]	Set the rotation speed specified after a dog is detected.
Home position shift distance	[Pr. PT07]	Set this item to shift the home position, which is specified by the Z-phase signal.
Home position return acceleration time constant	[Pr. PC30]	The acceleration time constant set for [Pr. PC30] is used.
Home position return deceleration time constant	[Pr. PC31]	The deceleration time constant set for [Pr. PC31] is used.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.
Program	DI1 (Program No. selection 1) to DI7 (Program No. selection 8)	Select a program containing a "ZRT" command, which performs the home position return.

5. HOW TO USE THE PROGRAM

(2) Timing chart

The following shows a timing chart after a program containing a "ZRT" command is selected.

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

5. HOW TO USE THE PROGRAM

5.4.10 Dog type last Z-phase reference home position return

After the front end of a proximity dog is detected, the position is shifted away from the proximity dog at the creep speed in the reverse direction and then specified by the first Z-phase signal. The position of the first Zphase signal is used as the home position.
(1) Device/parameter

Set input devices and parameters as shown below.

Item	Used device/parameter	
Automatic operation mode of the program method	MD0 (Operation mode selection 1)	Setting
Dog type last Z-phase reference home position return	[Pr. PT04]	SD0. phase reference).
Home position return direction	[Pr. PT04]	Refer to (2) of section 5.4.1 to select the home position return direction.
Dog input polarity	[Pr. PT29]	Refer to (2) of section 5.4.1 to select the dog input polarity.
Home position return speed	[Pr. PT05]	Set the rotation speed specified until a dog is detected.
Creep speed	[Pr. PT06]	Set the rotation speed specified after a dog is detected.
Home position shift distance	[Pr. PT07]	Set this item to shift the home position, which is specified by the Z-phase signal.
Home position return acceleration time constant	[Pr. PC30]	The acceleration time constant set for [Pr. PC30] is used.
Home position return deceleration time constant	[Pr. PC31]	The deceleration time constant set for [Pr. PC31] is used.
Home position return position data	[Pr. PT08]	Set the current position at the home position return completion.
Program	DI1 (Program No. selection 1) to DI7 (Program No. selection 8)	Select a program containing a "ZRT" command, which performs the home position return.

5. HOW TO USE THE PROGRAM

(2) Timing chart

The following shows a timing chart after a program containing a "ZRT" command is selected.

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

5. HOW TO USE THE PROGRAM

5.4.11 Dog type front end reference home position return type

POINT

This home position return method depends on the timing of reading DOG (Proximity dog) that has detected the front end of a proximity dog. Therefore, when a home position return is performed at a creep speed of $100 \mathrm{r} / \mathrm{min}$, the home position has an error of 6400 pulses (for HG series servo motor). The higher the creep speed, the greater the error of the home position.

The home position is where the machine moves the travel distance after proximity dog and the home position shift distance from the front end of a proximity dog.
The home position return is available independently of the Z-phase signal. Changing the creep speed may change the home position.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Automatic operation mode of the program method	MD0 (Operation mode selection 1)	Switch on MD0.
Dog type front end reference home position return	[Pr. PT04]	_ _ _ 9: Select the dog type (front end detection/ front end reference).
Home position return direction	[Pr. PT04]	Refer to section 5.4.1 (2) to select the home position return direction.
Dog input polarity	[Pr. PT29]	Refer to section 5.4.1 (2) to select the dog input polarity.
Home position return speed	[Pr. PT05]	Set the rotation speed until a dog is detected.
Creep speed	[Pr. PT06]	Set the rotation speed after a dog is detected.
Home position shift distance	[Pr. PT07]	Set this item to move the home position set when the Z-phase signal is given.
Travel distance after proximity dog	[Pr. PT09]	Set the travel distance specified after the front end of the proximity dog is passed.
Home position return acceleration time constant	[Pr. PC30]	The acceleration time constant set for [Pr. PC30] is used.
Home position return deceleration time constant	[Pr. PC31]	The deceleration time constant set for [Pr. PC31] is used.
Home position return position data	[Pr. PT08]	Set a current position at home position return completion.
Program	DIO (Program No. selection 1) to DI7 (Program No. selection 8)	Select a program containing "ZRT" command that performs a home position return.

5. HOW TO USE THE PROGRAM

(2) Timing chart

The following shows a timing chart after a program containing a "ZRT" command is selected.

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

5. HOW TO USE THE PROGRAM

5.4.12 Dogless Z-phase reference home position return type

Starting from the Z-phase pulse position after the start of the home position return, the position is shifted by the home position shift distance. The position after the shifts is used as the home position.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Automatic operation mode of the program method	MD0 (Operation mode selection 1)	Switch on MD0.
Dogless Z-phase reference home position return	[Pr. PT04]	_-_-A: Select the dogless type (Z-phase reference).
Home position return direction	[Pr. PT04]	Refer to section 5.4.1 (2) to select the home position return direction.
Dog input polarity	[Pr. PT29]	Refer to section 5.4.1 (2) to select the dog input polarity.
Home position return speed	[Pr. PT05]	Set the rotation speed until a dog is detected.
Creep speed	[Pr. PT06]	Set the rotation speed after a dog is detected.
Home position shift distance	[Pr. PT07]	Set this item to move the home position set when the Z-phase signal is given.
Home position return acceleration time constant	[Pr. PC30]	The acceleration time constant set for [Pr. PC30] is used.
Home position return deceleration time constant	[Pr. PC31]	The deceleration time constant set for [Pr. PC31] is used.
Home position return position data	[Pr. PT08]	Set a current position at home position return completion.
Program	Select a program containing "ZRT" command that performs a home position return.	

(2) Timing chart

The following shows a timing chart after a program containing a "ZRT" command is selected.

The setting value of [Pr. PT08 Home position return position data] is used as the position address at the home position return completion.

5. HOW TO USE THE PROGRAM

5.4.13 Automatic retract function used for the home position return

For a home position return using the proximity dog, when the home position return is started from the position on or beyond the proximity dog, the home position return is performed after the machine moves back to the position where the home position can be performed.
(1) When the current position is on the proximity dog

When the current position is on the proximity dog, the machine moves backward automatically, and the home position return is performed.

After retracting to before proximity dog, the home position return starts from here.
(2) When the current position is beyond the proximity dog At start-up, the operation is performed in the direction of the home position return. When LSP (Forward rotation stroke end) or LSN (Reverse rotation stroke end) is detected, the machine moves backward automatically. The machine passes and stops before the proximity dog, and the home position return is performed from the position again. If the proximity dog cannot be detected, the machine stops at LSP or LSN on the opposite side, and [AL. 90 Home position return incomplete warning] will occur.

After retracting to before proximity dog, the home position return starts from here.

The software limit cannot be used with these functions.

5. HOW TO USE THE PROGRAM

5.5 Serial communication operation

Using the RS-422 communication function, you can use to operate a servo amplifier from the controller such as a personal computer.
This section explains the data communication procedure. Refer to chapter 10 for details of the connection between the controller and servo amplifier and of communication data.

5.5.1 Positioning operation using the program

Using the communication function can select program Nos., perform the positioning operation using the program by switching on ST1 (Forward rotation start).
(1) Program selection

Select program No. 1 to 256 using the forced output of the device from the controller (command [9] [2] and data No. [6] [0]).
(2) Timing chart

No.	Transmission data description	Command	Data No.
1)	Select Program No. 2.	$[9][2]$	$[6][0]$
2$)$	Select Program No. 1.	$[9][2]$	$[6][0]$
3$)$	Select Program No. 3.	$[9][2]$	$[6][0]$
4$)$	Switch on ST1 (Forward rotation start).	$[9][2]$	$[6][0]$
5)	Switch off ST1 (Forward rotation start).	$[9][2]$	$[6][0]$

5. HOW TO USE THE PROGRAM

5.5.2 Multi-drop method (RS-422 communication)

Using the RS-422 communication function can use to operate multiple servo amplifiers on the same bus. In this case, set station numbers to the servo amplifier because the controller recognizes that the data currently being sent is for which servo amplifier. Set station Nos. with [Pr. PC20 Station number setting].
Always set one station No. to one servo amplifier. Setting one station number to multiple servo amplifiers will disable a normal communication. When you use to operate multiple servo amplifiers under one command, use the group specification function in section 5.5.3.
(1) MR-J4-_A_-RJ 100 W or more

Note 1. The BMJ-8 (Hachiko Electric) is recommended as the branch connector.
2. The final axis must be terminated between RDP (pin No.3) and RDN (pin No.6) on the receiving side (servo amplifier) with a 150Ω resistor.
(2) MR-J4-03A6-RJ

5. HOW TO USE THE PROGRAM

5.5.3 Group specification

ⒸAUTION
 Set only one servo amplifier capable of returning data in a group. If multiple servo amplifiers return data under commands from the controller, the servo amplifiers may malfunction.

When using multiple servo amplifiers, you can set parameters with commands per group.
Up to 6 groups of a to f can be set. Set groups for each station with the communication commands of Mitsubishi general-purpose AC servo protocol.
(1) Group setting example

The following shows a configuration diagram of MR-J4-_A_-RJ 100 W or more servo amplifiers.

Group d
Group c

Servo amplifier station No.	Group setting
Station 0	
Station 1	a
Station 2	
Station 3	b
Station 4	c
Station 5	d
Station 6	d
Station 7	
Station 8	
Station 9	

5. HOW TO USE THE PROGRAM

(2) Timing chart

The following shows a timing chart of operation for each group performed with setting values set in program No. 1.

No.	Transmission data description	Command	Data No.
1)	Select Program No. 1 in group a.	$[9][2]$	$[6][0]$
2$)$	Switch on ST1 (Forward rotation start).	$[9][2]$	$[6][0]$
3$)$	Switch off ST1 (Forward rotation start).	$[9][2]$	$[6][0]$
4$)$	Select Program No. 1 in group b.	$[9][2]$	$[6][0]$
5$)$	Switch on ST1 (Forward rotation start).	$[9][2]$	$[6][0]$
6$)$	Switch off ST1 (Forward rotation start).	$[9][2]$	$[6][0]$
7$)$	Select Program No. 1 in group c.	$[9][2]$	$[6][0]$
8$)$	Switch on ST1 (Forward rotation start).	$[9][2]$	$[6][0]$
9$)$	Switch off ST1 (Forward rotation start).	$[9][2]$	$[6][0]$
10$)$	Select Program No. 1 in group d.	$[9][2]$	$[6][0]$
11$)$	Switch on ST1 (Forward rotation start).	$[9][2]$	$[6][0]$
12$)$	Switch off ST1 (Forward rotation start).	$[9][2]$	$[6][0]$

Besides this, you can perform simultaneous writing of parameters common to stations of each group, reset alarms, etc.

5. HOW TO USE THE PROGRAM

5.6 Incremental value command method

When using this servo amplifier under the incremental value command method, you must change the setting of [Pr. PT01].
As position data, set the travel distance from the current address to the target address. The incremental value command method enables infinitely long constant rate of feeding.

Setting range: -999999 to $999999\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$ (STM $=$ Feed length multiplication [Pr. PT03]) -999999 to 999999 [$\times 10^{(\text {STM-4 })}$ inch] (STM $=$ Feed length multiplication [Pr. PT03]) -999999 to 999999 [pulse]

This section indicates contents different from the absolute value command method (factory setting) when this servo amplifier is used under the incremental value command method.
(1) Parameter setting

Set [Pr. PT01] to select the incremental value command method as shown below.

(2) Command

The command contents of "MOV" and "MOVA" are changed as follows. There are no changes in other command. Thus, the command contents are the same between "MOV" and "MOVI", and between "MOVA" and "MOVIA".

Command	Name	Setting	Setting range	Unit	Indirect specifica tion	Description
MOV	Incremental value travel command	MOV (setting value)	-999999 to 999999	$\times 10^{\text {STM } \mu \mathrm{m}}$	\bigcirc	The servo motor rotates using the set value as the incremental value. The same as "MOVI" command
MOVA	Incremental value continuous travel command	MOVA (setting value)	-999999 to 999999	$\times 10^{\text {STM } \mu \mathrm{m}}$	\bigcircThe servo motor rotates continuously as the set incremental value. Make sure to describe this command after the "MOV" command. If this command is described after other command, an error will occur. The same as "MOVIA" command	

5. HOW TO USE THE PROGRAM

(3) Program example

Command	Description			
SPN (1000)	Servo motor speed	1000 [r/min]	a)	
STA (200)	Acceleration time constant	200 [ms]	b)	
STB (300)	Deceleration time constant	300 [ms]	c)	
MOVI (1000)	Incremental value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	d)	
TIM (100)	Dwell	100 [ms]	e)	
SPN (500)	Servo motor speed	500 [r/min]	f)	
STA (200)	Acceleration/deceleration time constant	200 [ms]	g)	
STB (300)	Deceleration time constant	300 [ms]	h)	\longleftarrow.
MOVI (1000)	Incremental value travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	i)	\square
SPN (1000)	Servo motor speed	1000 [r/min]	j)	4
MOVIA (1000)	Incremental value continuous travel command	$1000\left[\times 10^{\text {STM }} \mu \mathrm{m}\right]$	k)	
STOP	Program stop			

5.7 Roll feed mode using the roll feed display function

Refer to section 4.5 for parameter settings of roll feed display function, position data unit and operation method.

When the roll feed display function is used, the status display of the current position at start will be 0 .

5. HOW TO USE THE PROGRAM

5.8 Program setting method

The following shows the setting method of programs using MR Configurator2.

5.8.1 Setting procedure

Click "Positioning-data" in the menu bar and click "Program" in the menu.

The following window will be displayed by clicking.

(1) Reading program (a)

Click the "Read" button to read and display programs stored in the servo amplifier.
(2) Writing program (b)

Click the "Write" button to write the changed programs to the servo amplifier.
(3) Verifying program (c)

Click the "Verify" button to verify the contents of programs in the personal computer with contents of programs of the servo amplifier.
(4) Single-step feed (d)

Click "Single-step Feed" to perform the single-step feed test operation. Refer to section 3.1.9 or 3.2.9 for details.
(5) Number of steps (e)

Used number of steps in all programs and remained steps are displayed.
(6) Editing program (f)

You can edit any program. Click the "Edit" button to open the window for program edit. For the rotation direction, refer to section 5.8.2.

5. HOW TO USE THE PROGRAM

(7) Reading program file (g)

Click "Open" to read the point table data.
(8) Saving program file (h)

Click "Save As" to save the program.
(9) Indirect addressing (i)

Click "Indirect addressing" to open the indirect addressing window. Refer to section 5.8.3 for details.
(10) Updating project (j)

Click "Update Project" to update the program to a project.

5.8.2 Window for program edit

You can create programs with the window for program edit.

(1) Program edit (a)

Input commands to the program edit area (a) in text format.
(2) Cutting text (b)

Select any text of the program edit area and click the "Cut" button to cut the selected text.
(3) Copying text (c)

Select any text of the program edit area and click the "Copy" button to copy the selected text to the clipboard.

5. HOW TO USE THE PROGRAM

(4) Pasting text (d)

Click the "Paste" button to paste the copied text on the clipboard to a specified place of the program edit area.
(5) Ending window for program (e)

Click the "OK" button to execute the edit check. When the edit check completes with no error, the edit will finish and the window for program edit will be closed. When the edit check detects an error in the program, it will be displayed.
(6) Canceling window for program edit (f)

Click the "Cancel" button to close the window for program edit without saving the program currently being edited.
(7) Displaying error (g)

When the edit check of (5) detects an error in the program, the row No. and content of the error will be displayed. Click the error content, the cursor will move to the row of the corresponding program.

5.8.3 Indirect addressing window

Set general purpose registers (D1 to D4 and R1 to R4) in this screen.

(1) Register edit field (a)

Set general purpose register values of D1 to D4 and R1 to R4.
(2) Register reference field (b)

The last register value read from the servo amplifier is displayed.
(3) ROM writing button (c)

You can write register values (D1 to D4 and R1 to R4) stored in the servo amplifier to the servo amplifier.

MEMO

\qquad

6. HOW TO USE INDEXER

6. HOW TO USE INDEXER

The following item is the same as that of MR-J4-_A_-RJ servo amplifiers. For the details of the items, refer to each chapter/section (in "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual") indicated in the detailed explanation field.

Item	Detailed explanation	
	MR-J4-_A_-RJ 100 W or more	MR-J4-03A6-RJ
Switching power on for the first time	Section 4.1	Section 18.4

POINT
In the absolute position detection system, rotating the shaft one revolution or more during power-off may erase a home position. Therefore, do not rotate the shaft one revolution or more during power-off. When a home position is erased, [AL. 90 Home position return incomplete warning] will occur. Then, execute the home position return again.
The indexer method cannot be used in the fully closed loop system and linear servo system. The combination of the indexer method and fully closed loop system/linear servo system triggers [AL. 37 Parameter error].

6.1 Startup

6.1.1 Power on and off procedures

When the servo amplifier is powered on for the first time, the control mode is set to position control mode. (Refer to section 4.2.1 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
This section provides a case where the servo amplifier is powered on after setting the positioning mode.
(1) Power-on

Switch power on in the following procedure. Always follow this procedure at power-on.

1) Switch off SON (Servo-on).
2) Make sure that ST1 (Forward rotation start) is off.
3) Switch on the main circuit power supply and control circuit power supply.

The display shows "C" ("CL" for MR-J4-03A6-RJ servo amplifiers), and in 2 s later, shows data.

(2) Power-off

1) Switch off ST1 (Forward rotation start).
2) Switch off SON (Servo-on).
3) Switch off the main circuit power supply and control circuit power supply.

6. HOW TO USE INDEXER

6.1.2 Stop

If any of the following situations occurs, the servo amplifier suspends the running of the servo motor and brings it to a stop.
Refer to section 3.10 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" for the servo motor with an electromagnetic brake.

Operation/command	Stopping condition
Switch off SON (Servo-on).	The base circuit is shut off and the servo motor coasts.
Alarm occurrence	The servo motor decelerates to a stop with the command. With some alarms, however, the dynamic brake operates to bring the servo motor to a stop. (Refer to chapter 8. (Note 1))
EM2 (Forced stop 2) off	The servo motor decelerates to a stop with the command. [AL. E6 Servo forced stop warning] occurs. Refer to section 2.3 for EM1.
STO (STO1, STO2) off (Note 2)	The base circuit is shut off and the dynamic brake operates to bring the servo motor to a stop.
LSP (Forward rotation stroke end) off, LSN (Reverse rotation stroke end) off	It will bring the motor to a sudden stop and make it servo-locked. It can be run in the opposite direction.

[^4]
6. HOW TO USE INDEXER

6.1.3 Test operation

Before starting actual operation, perform test operation to make sure that the machine operates normally. Refer to section 6.1.1 for how to power on and off the servo amplifier.

In this step, confirm that the servo amplifier and servo motor operate normally.
With the servo motor disconnected from the machine, use the test operation mode and check whether the servo motor correctly rotates at the slowest speed. For the test operation mode, refer to section 3.1.8 and 3.2.8 in this manual, and section 4.5 .9 and 18.5.10 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

In this step, confirm that the servo motor correctly rotates at the slowest speed in the manual operation mode.
Make sure that the servo motor rotates in the following procedure.

1) Switch on EM2 (Forced stop 2) and SON (Servo-on). When the servo amplifier is put in a servo-on status, RD (Ready) switches on.
2) Switch on LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end).
3) To rotate the servo motor, turn on ST1 (Forward rotation start) in the manual operation mode with the controller. Set a low speed to [Pr. PT13] at first, make the servo motor operate, and check the rotation direction of the motor, etc. If the machine does not operate in the intended direction, check the input signal.

In this step, connect the servo motor with the machine and confirm that the machine operates normally under the commands from the controller. Make sure that the servo motor rotates in the following procedure.

1) Switch on EM2 (Forced stop 2) and SON (Servo-on). When the servo amplifier is put in a servo-on status, RD (Ready) switches on.
2) Switch on LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end).
3) To rotate the servo motor, turn on ST1 (Forward rotation start) in the manual operation mode with the controller. Set a low speed to [Pr. PT13] at first, make the servo motor operate, and check the operation direction of the machine, etc. If the machine does not operate in the intended direction, check the input signal. In the status display, check for any problems of the servo motor speed, load ratio, etc.

Check automatic operation from the controller.

6. HOW TO USE INDEXER

6.1.4 Parameter setting

POINT

The following encoder cables are of four-wire type. When using any of these encoder cables, set [Pr. PC22] to "1 _ _ _" to select the four-wire type. Incorrect setting will result in [AL. 16 Encoder initial communication error 1].
MR-EKCBL30M-L
MR-EKCBL30M-H
MR-EKCBL40M-H
MR-EKCBL50M-H

When using this servo in the indexer method, set [Pr. PA01] to " \qquad 8" (Positioning mode (indexer method)). For the indexer method, the servo can be used by merely changing the basic setting parameters ([Pr. PA __]) and positioning control parameters ([Pr. PT _ _]) mainly. As necessary, set other parameters.
The following table shows [Pr. PA __] and [Pr. PT __] settings required for the indexer method.

Operation mode selection item Operation mode		Parameter setting			Input device setting		
		[Pr. PA01]	[Pr. PT04] (Note 2)	[Pr. PT27]	$\begin{gathered} \text { MD0 } \\ (\text { Note 1) } \end{gathered}$	$\begin{gathered} \text { MD1 } \\ \text { (Note 1) } \end{gathered}$	DIO to DI7 (Note 1)
Automatic operation mode	Automatic operation mode 1 (Rotation direction specifying indexer)	--- 8			Off	On	Set any next station No. (Refer to section 6.2.2 (3).)
	Automatic operation mode 2 (Shortest rotating indexer)				On	On	
Manual operation mode	Station JOG operation				On	Off	Any
	JOG operation			$-{ }^{1}-$			
Home position return mode	Dog type/Torque limit changing dog type		- 0		Off	Off	Any
	Data set type/torque limit changing data set type		_-_ 2				

Note 1. MD0: Operation mode selection 1, MD1: Operation mode selection 2, DIO to DI7: Next station No. selection 1 to 8
2. Setting other than " \qquad 0 " and "_ _ 2" will trigger [AL. 37 Parameter error].

6. HOW TO USE INDEXER

6.1.5 Actual operation

Start actual operation after confirmation of normal operation by test operation and completion of the corresponding parameter settings.

6.1.6 Troubleshooting at start-up

Never make a drastic adjustment or change to the parameter values as doing so will make the operation unstable.

The following faults may occur at start-up. If any of such faults occurs, take the corresponding action. "MR-J4-_A_" means "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

No.	Start-up sequence	Fault	Investigation	Possible cause	Reference
1	Power on	The 7-segment LED display does not turn on. - The 7-segment LED display flickers.	Not improved even if CN1, CN2, and CN3 connectors are disconnected.	1. Power supply voltage fault 2. The servo amplifier is malfunctioning.	
			Improved when CN1 connector is disconnected.	Power supply of CN1 cabling is shorted.	
			Improved when CN2 connector is disconnected.	1. Power supply of encoder cabling is shorted. 2. Encoder is malfunctioning.	
			Improved when CN3 connector is disconnected.	Power supply of CN3 cabling is shorted.	
		Alarm occurs.	Refer to chapter 8 and remove the cause.		Chapter 8 (Note)
2	Switch on SON (Servo-on).	Alarm occurs.	Refer to chapter 8 and remove the cause.		Chapter 8 (Note)
		Servo motor shaft is not servo-locked. (Servo motor shaft is free.)	1. Check the display to see if the servo amplifier is ready to operate. 2. Check the external I/O signal indication (section 3.1.7 or 3.2.7) to see if SON (Servoon) is on.	1. SON (Servo-on) is not input. (wiring mistake) 2. 24 V DC power is not supplied to DICOM.	Section 3.1.7 Section 3.2.7
3	Perform a home position return.	Servo motor does not rotate.	Call the external I/O signal display and check the on/off status of the input signal. (Refer to section 3.1.7 or 3.2.7.)	LSP, LSN, and ST1 are off.	Section 3.1.7 Section 3.2.7
			Check [Pr. PA11 Forward rotation torque limit] and [Pr. PA12 Reverse rotation torque limit].	Torque limit level is too low as compared to the load torque.	Section 7.2.1
			When TLA (Analog torque limit) is usable, check the input voltage on the status display.	Torque limit level is too low as compared to the load torque.	Section 3.1.2 Section 3.2.2
		The home position return is not completed.	Call the external I/O signal display and check the on/off status of DOG. (Refer to section 3.1.7 or 3.2.7.)	The proximity dog is set incorrectly.	Section 3.1.7 Section 3.2.7

6. HOW TO USE INDEXER

No.	Start-up sequence	Fault	Investigation	Possible cause	Reference
4	Switch on ST1 (Forward rotation start).	Servo motor does not rotate.	Call the external I/O signal display (Section 3.1.7 or 3.2.7) and check the on/off status of the input signal.	LSP, LSN, and ST1 are off.	Section 3.1.7 Section 3.2.7
			Check [Pr. PA11 Forward rotation torque limit] and [Pr. PA12 Reverse rotation torque limit].	Torque limit level is too low as compared to the load torque.	Section 7.2.1
			When TLA (Analog torque limit) is usable, check the input voltage on the status display.	Torque limit level is too low as compared to the load torque.	Section 3.1.2 Section 3.2.2
5	Gain adjustment	Rotation ripples (speed fluctuations) are large at low speed.	Make gain adjustment in the following procedure. 1. Increase the auto tuning response level. 2. Repeat acceleration/ deceleration more than three times to complete auto tuning.	Gain adjustment fault	MR-J4_A Chapter 6
		Large load inertia moment causes the servo motor shaft to oscillate side to side.	If the servo motor may be driven with safety, repeat acceleration and deceleration three times or more to complete the auto tuning.	Gain adjustment fault	MR-J4_A_ Chapter 6

Note. Only a list of alarms and warnings is listed in chapter 8. Refer to "MELSERVO-J4 Servo Amplifier Instruction Manual (Troubleshooting)" for details of alarms and warnings.

6. HOW TO USE INDEXER

6.2 Automatic operation mode

POINT

There are the following conditions between the number of gear teeth on machine side ([Pr. PA06 Number of gear teeth on machine side]) and servo motor speed (N).

- When CMX $\leq 2000, \mathrm{~N}<3076.7 \mathrm{r} / \mathrm{min}$
- When CMX > 2000, N < 3276.7-CMX r/min

When the servo motor is operated at servo motor speed higher than the limit value, [AL. E3 Absolute position counter warning] occurs.
When the same next station No. is specified as station No. of the current position and a positioning operation is executed, the motor does not start because the travel distance is decided as " 0 ".

6.2.1 Automatic operation mode

(1) Logic of indexer

The positioning is executed like this. A station, which one of the divided circumference (360 degrees) into 255 at most on the machine side, is selected by using 8-bit devices of the DIO (Next station No. selection 1) to DI7 (Next station No. selection 8). The following diagram is an example for when [Pr. PA14] is set to " 0 ".

The station No. 0 is set as a home position. The number of divisions is set with [Pr. PT28].
(2) Rotation direction

There are two operation methods: Rotation direction specifying indexer, which always rotates in a fixed direction and execute positioning to a station; Shortest rotating indexer, which automatically changes a rotation direction to the shortest distance and execute positioning to a station

Rotation direction specifying indexer

Shortest rotating indexer

6. HOW TO USE INDEXER

6.2.2 Automatic operation mode 1 (rotation direction specifying indexer)

In this operation mode, the servo motor rotates in a fixed direction to execute positioning to a station. The positioning is executed by selecting a station No. using 8-bit devices of the DIO (Next station No. selection 1) to DI7 (Next station No. selection 8). For the servo motor speed and acceleration/deceleration time constant during operation, the values set in the point tables are used.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Selecting indexer method	Control mode selection of [Pr. PA01]	Select "_ _ _ 8" (positioning mode (indexer method)).
Next station position	DIO (Next station No. selection 1) to DI7 (Next station No. selection 8)	Set any next station No. (Refer to (3) of this section.)
Selecting automatic operation mode 1 (rotation direction specifying indexer)	MD0 (Operation mode selection 1)	Switch off MD0.
	MD1 (Operation mode selection 2)	Switch on MD1.
Rotation direction selection	SIG (External limit/Rotation direction decision/Automatic speed selection)	The rotation direction to a station No. will be as follows. Off: Station No. decreasing direction On: Station No. increasing direction
Servo motor speed	[Pr. PC05]	Set a servo motor speed.
Acceleration time constant/Deceleration time constant	RT (Second acceleration/deceleration selection)	1. When RT is turned off Acceleration time constant: setting value of [Pr. PC01 Acceleration time constant 1] Deceleration time constant: setting value of [Pr. PC02 Deceleration time constant 1] 2. When RT is turned on Acceleration time constant: setting value of [Pr. PC30 Acceleration time constant 2] Deceleration time constant: setting value of [Pr. PC31 Deceleration time constant 2]
Torque limit (Note)	$\begin{array}{\|l\|} \hline \text { [Pr. PA11] } \\ \text { [Pr. PA12] } \end{array}$	Set a torque limit value for during operation.
	[Pr. PC35]	Set a torque limit value for during stop.
	[Pr. PT39]	Set time to switch the torque limit value from during operation until during stop.

Note. The torque limit will change from [Pr. PC35 Internal torque limit 2] to the setting value of [Pr. PA11 Forward rotation torque limit] or [Pr. PA12 Reverse rotation torque limit] when ST1 (Forward rotation start) is inputted. After MEND (Travel completion) is outputted, the time has passed set with [Pr. PT39] and the torque limit will change from [Pr. PA11 Forward rotation torque limit] or [Pr. PA12 Reverse rotation torque limit] to the setting value of [Pr. PC35 Internal torque limit 2].

6. HOW TO USE INDEXER

(2) Other parameter settings
(a) Setting assignment direction of station No.

Select an assignment direction of station No. with [Pr. PA14].

[Pr. PA14]: 0 (initial value)

[Pr. PA14]: 1
(b) Setting number of stations

Set a number of stations to [Pr. PT28].

-	[Pr. PT28] setting				
Number of stations	2	3	4	- • •	255
Station No.	No. 1 No. 0			- • •	

6. HOW TO USE INDEXER

(3) Operation

Select a target station No. using 8-bit devices of the DIO (Next station No. selection 1) to DI7 (Next station No. selection 8) for positioning.

Device (Note 1)								Selection contents
DI7	DI6	DI5	DI4	DI3	DI2	DI1	DIO	
0	0	0	0	0	0	0	0	Next station No. 0
0	0	0	0	0	0	0	1	Next station No. 1
0	0	0	0	0	0	1	0	Next station No. 2
0	0	0	0	0	0	1	1	Next station No. 3
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
.
1	1	1	1	1	1	1	0	Next station No. 254
1	1	1	1	1	1	1	1	Setting inhibited (Note 2)

Note 1. 0: Off
1: On
2. [AL. 97.2 Next station position warning] will occur.
(4) Timing chart

POINT

Always perform a home position return. Executing positioning operation without home position return will trigger [AL. 90 Home position return incomplete warning] and ST1 (Forward rotation start) will be disabled.
-When a next station position is over the setting value of [Pr. PT28 Number of stations per rotation], [AL. 97 Next station position warning] will occur and ST1 (Forward rotation start) will be disabled.

6. HOW TO USE INDEXER

The following timing chart shows that an operation is performed at a stop of the station No. 0 when servo-on.

Number of stations: 8

Power supply
ALM (Malfunction)
MEND (Travel completion)
PS0 (Station output 1) to
PS7 (Station output 8)

DIO (Next station No. selection 1) to DI7 (Next station No. selection 8)

Note 1. When the rest of command travel distance is other than "0", ST1 (Forward rotation start) will not be accepted. Refer to section 6.4.5 (1).
2. RT (Second acceleration/deceleration selection) will not be accepted during operation. Selection of the servo motor speed and acceleration/deceleration time constants will be enabled by on-edge of ST1 (Forward rotation start). However, when the rest of command travel distance is other than "0", turning on ST1 (Forward rotation start) will not be enabled.
3. Counting will start when the rest of command travel distance becomes " 0 ".
4. When MEND (Travel completion) is off, the station position outputs will be " 0 " (all off).
5. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PS0 to PS7 cannot be outputted simultaneously.

6. HOW TO USE INDEXER

6.2.3 Automatic operation mode 2 (shortest rotating indexer)

This operation mode automatically changes a rotation direction to the shortest distance to execute positioning to a station.
The positioning is executed by selecting a station No. using 8-bit devices of the DIO (Next station No. selection 1) to DI7 (Next station No. selection 8). For the servo motor speed and acceleration/deceleration time constant during operation, the values set in the point tables are used.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Selecting indexer method	Control mode selection of [Pr. PA01]	Select " \qquad 8" (positioning mode (indexer method)).
Next station position	DIO (Next station No. selection 1) to DI7 (Next station No. selection 8)	Set any next station No. (Refer to (3) of this section.)
Automatic operation mode 2 (shortest rotating indexer) selection	MD0 (Operation mode selection 1)	Switch on MD0.
	MD1 (Operation mode selection 2)	Switch on MD1.
Servo motor speed	SIG (External limit/Rotation direction decision/Automatic speed selection)	The servo motor speed will be as follows. Off: setting value of [Pr. PC05 Automatic operation speed 1] On: setting value of [Pr. PC06 Automatic operation speed 2]
Acceleration time constant/Deceleration time constant	RT (Second acceleration/deceleration selection)	1. When RT is turned off Acceleration time constant: setting value of $[\mathrm{Pr}$. PC01 Acceleration time constant 1] Deceleration time constant: setting value of [Pr. PC02 Deceleration time constant 1] 2. When RT is turned on Acceleration time constant: setting value of [Pr. PC30 Acceleration time constant 2] Deceleration time constant: setting value of [Pr. PC31 Deceleration time constant 2]

(2) The other parameter setting (number of stations)

Set a number of stations to [Pr. PT28]. The setting is the same as that of automatic operation mode 1.
Refer to section 6.2.2 (2) (b).
[Pr. PA14 Rotation direction selection] is not used in the automatic operation mode 2.

6. HOW TO USE INDEXER

(3) Operation

Select a target station No. using 8-bit devices of the DIO (Next station No. selection 1) to DI7 (Next station No. selection 8) for positioning.

Device (Note 1)								Selection contents
DI7	DI6	DI5	DI4	DI3	DI2	DI1	DIO	
0	0	0	0	0	0	0	0	Next station No. 0
0	0	0	0	0	0	0	1	Next station No. 1
0	0	0	0	0	0	1	0	Next station No. 2
0	0	0	0	0	0	1	1	Next station No. 3
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
.	-
1	1	1	1	1	1	1	0	Next station No. 254
1	1	1	1	1	1	1	1	Setting inhibited (Note 2)

Note 1. 0: Off
1: On
2. [AL. 97.2 Next station position warning] will occur.

6. HOW TO USE INDEXER

(4) Timing chart

POINT

Always perform a home position return. Executing positioning operation without home position return will trigger [AL. 90 Home position return incomplete warning] and ST1 (Forward rotation start) will be disabled.
-When travel distances are the same to a target station position from CCW and from CW, the shaft will rotate to the station No. increasing direction.

The following timing chart shows that an operation is performed at a stop of the station No. 0 when servo-on.

Number of stations: 8

Power supply
ALM (Malfunction)
MEND (Travel completion)
PS0 (Station output 1) to
PS7 (Station output 8)
(Note 5)
DIO (Next station No. selection 1) to
DI7 (Next station No. selection 8)

Servo moto speed

Forward rotation 0 r/min

 Reverse rotationT1 (Forward rotation start)

SIG

(External limit/Rotation direction decision/Automatic speed selection) RT
(Second acceleration/ deceleration selection)

MD0
(Operation mode selection 1)
MD1
(Operation mode selection 2)

Torque limit

6. HOW TO USE INDEXER

Note 1. When the rest of command travel distance is other than "0", ST1 (Forward rotation start) will not be accepted. Refer to section 6.4 .5 (1).
2. RT (Second acceleration/deceleration selection) will not be accepted during operation. Selection of the servo motor speed and acceleration/deceleration time constants will be enabled by on-edge of ST1 (Forward rotation start). However, when the rest of command travel distance is other than " 0 ", turning on ST1 (Forward rotation start) will not be enabled.
3. Counting will start when the rest of command travel distance becomes " 0 ".
4. When MEND (Travel completion) is off, the station position outputs will be " 0 " (all off).
5. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PSO to PS7 cannot be outputted simultaneously.

6.3 Manual operation mode

POINT
When the operation mode is changed during operation, inputting ST1 (Forward rotation start) is disabled until the operation stops. Switch on ST1 (Forward rotation start) after the operation stops.

For the machine adjustment, home position adjustment, and others, you can shift the position to any position with the station JOG operation or JOG operation.

6.3.1 Station JOG operation

(1) Setting

According to the purpose of use, set devices and parameters as shown below. With this operation, DIO (Next station No. selection 1) to DI7 (Next station No. selection 8) are disabled.

Item	Used device/parameter	Setting
Selecting indexer method	Control mode selection of [Pr. PA01]	Select " \qquad 8" (positioning mode (indexer method)).
Manual operation mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	MD1 (Operation mode selection 2)	Switch off MD1.
Station JOG operation selection	[Pr. PT27]	Select "_- ${ }^{\text {_ }}$ " (Station JOG operation).
Rotation direction selection	SIG (External limit/Rotation direction decision/Automatic speed selection)	The rotation direction to a station No. will be as follows. Off: Station No. decreasing direction On: Station No. increasing direction
Servo motor speed	[Pr. PC07]	Set a servo motor speed.
Acceleration time constant/Deceleration time constant	RT (Second acceleration/deceleration selection)	1. When RT is turned off Acceleration time constant: setting value of [Pr. PC01 Acceleration time constant 1] Deceleration time constant: setting value of [Pr. PC02 Deceleration time constant 1] 2. When RT is turned on Acceleration time constant: setting value of [Pr. PC30 Acceleration time constant 2] Deceleration time constant: setting value of [Pr. PC31 Deceleration time constant 2]

6. HOW TO USE INDEXER

(2) Setting assignment direction of station No.

Select an assignment direction of station No. with [Pr. PA14].

(3) Operation

Turning on ST1 (Forward rotation start) will start rotation to a direction specified with the rotation direction decision and turning off it will execute a positioning to the closest station position which is possible to decelerate to a stop. However, the shaft stops based on a set time constant depending on the setting value of deceleration time constant. The speed may not reach the specified speed.

6. HOW TO USE INDEXER

(4) Timing chart

The following timing chart shows that a JOG operation is performed at a stop of the station No. 0 when servo-on.

Note 1. When the rest of command travel distance is other than " 0 ", ST1 (Forward rotation start) will not be accepted. Refer to section 6.4.5 (1).
2. SIG and RT (Second acceleration/deceleration selection) will not be accepted during operation. Selection of the servo motor speed and acceleration/deceleration time constants will be enabled by on-edge of ST1 (Forward rotation start). However, when the rest of command travel distance is other than "0", turning on ST1 (Forward rotation start) will not be enabled.
3. Counting will start when the rest of command travel distance becomes "0".
4. When MEND (Travel completion) is off, the station position outputs will be "0" (all off).
5. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PS0 to PS7 cannot be outputted simultaneously.

6. HOW TO USE INDEXER

6.3.2 JOG operation

(1) Setting

According to the purpose of use, set devices and parameters as shown below. With this operation, DIO (Next station No. selection 1) to DI7 (Next station No. selection 8) are disabled.

Item	Used device/parameter	Setting
Selecting indexer method	Control mode selection of [Pr. PA01]	Select " \qquad 8" (positioning mode (indexer method)).
Manual operation mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	MD1 (Operation mode selection 2)	Switch off MD1.
JOG operation selection	[Pr. PT27]	Select "__ 1 _" (JOG operation).
Rotation direction selection	SIG (External limit/Rotation direction decision/Automatic speed selection)	The rotation direction to a station No. will be as follows. Off: Station No. decreasing direction On: Station No. increasing direction
Servo motor speed	[Pr. PC07]	Set a servo motor speed.
Acceleration time constant/Deceleration time constant	RT (Second acceleration/deceleration selection)	1. When RT is turned off Acceleration time constant: setting value of [Pr. PC01 Acceleration time constant 1] Deceleration time constant: setting value of [Pr. PC02 Deceleration time constant 1] 2. When RT is turned on Acceleration time constant: setting value of [Pr. PC30 Acceleration time constant 2] Deceleration time constant: setting value of [Pr. PC31 Deceleration time constant 2]

(2) Operation

Turning on ST1 (Forward rotation start) will start rotation to a direction specified with the rotation direction decision and turning off it will decelerate to a stop regardless of the station position.

6. HOW TO USE INDEXER

(3) Timing chart

The following timing chart shows that a JOG operation is performed at a stop of the station No. 0 when servo-on.

Note 1. SIG and RT (Second acceleration/deceleration selection) will not be accepted during operation. Selection of the servo motor speed and acceleration/deceleration time constants will be enabled by on-edge of ST1 (Forward rotation start). However, when the rest of command travel distance is other than " 0 ", turning on ST1 (Forward rotation start) will not be enabled.
2. Counting will start when the rest of command travel distance becomes "0".
3. MEND (Travel completion) is off because the shaft does not stop within the in-position range of each next station position. When MEND (Travel completion) turns off, PS0 (Station output 1) to PS7 (Station output 8) will not be outputted. Additionally, the station position outputs will be "0" (all off) during home position return incompletion.
4. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PS0 to PS7 cannot be outputted simultaneously.

6. HOW TO USE INDEXER

6.4 Home position return mode

POINT

Before performing the home position return, check that the limit switch operates and SIG turns on.
Check the home position return direction. An incorrect setting will cause a reverse running.
Check the input polarity of the external limit. Otherwise, it may cause an unexpected operation.
In the following cases, make sure that the Z-phase has been passed through once before performing a home position return.

- When a servo amplifier is used in the DD motor control mode

Z-phase unpassed will trigger [AL. 90.5 Home position return incomplete warning].

6.4.1 Outline of home position return

A home position return is performed to match the command coordinates with the machine coordinates. Under the incremental method, each power-on of the input power supply requires the home position return. Contrastingly, in the absolute position detection system, once you have performed the home position return at machine installation, the current position will be retained even if the power supply is shut off. Therefore, the home position return is unnecessary when the power supply is switched on again.
This section shows the home position return methods of the servo amplifier. Select the optimum method according to the configuration and uses of the machine.
(1) Home position return types

Select the optimum home position return type according to the machine type or others.

System	Home position return method	Feature
Torque limit changing dog type	Deceleration starts at the external limit front end. After the rear end is passed, the position specified by the first Z-phase signal, or the position of the first Z-phase signal shifted by the home position shift distance is used as the home position.	- This is a typical home position return method using an external limit. - The repeatability of the home position return is high. - The machine is less loaded. - Used when the width of the external limit can be set equal to or greater than the deceleration distance of the servo motor.
Torque limit changing data set type	An arbitrary position is used as the home position.	- An external limit is not required.

6. HOW TO USE INDEXER

(2) Parameters for home position return

To perform the home position return, set each parameter as follows.
(a) Select the home position return type with [Pr. PT04 Home position return type].

(b) Select the starting direction for the home position return with [Pr. PT04 Home position return type]. Setting "0" starts the home position return in the address increasing direction from the current position. Setting "1" starts the home position return in the address decreasing direction from the current position.

(c) Select the polarity where the external limit is detected with the SIG polarity selection of [Pr. PT29 Function selection T-3].
Setting " 0 " is for detection with normally open contact and setting "1" is for detection with normally closed contact.

6. HOW TO USE INDEXER

6.4.2 Torque limit changing dog type home position return

This is a home position return method using an external limit. Deceleration starts at the external limit detection. After the rear end is passed, the position specified by the first Z-phase signal, or the position of the first Z-phase signal shifted by the home position shift distance is used as the home position.

(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Home position return mode selection	MD0 (Operation mode selection 1)	Switch off MD0.
	MD1 (Operation mode selection 2)	Switch off MD1.
Torque limit changing dog type home position return	[Pr. PT04]	Select "___0" (Torque limit changing dog type).
Home position return speed	[Pr. PT05]	Set the rotation speed specified until an external limit is detected.
Creep speed	[Pr. PT06]	Set the rotation speed specified after an external limit is detected.
Home position shift distance	[Pr. PT07]	Set this item to shift the home position, which is specified by the first Z-phase signal after the external limit is detected.
Acceleration time constant/Deceleration time constant	RT (Second acceleration/deceleration selection)	1. When RT is turned off Acceleration time constant: setting value of [Pr. PC01 Acceleration time constant 1] Deceleration time constant: setting value of [Pr. PC02 Deceleration time constant 1] 2. When RT is turned on Acceleration time constant: setting value of [Pr. PC30 Acceleration time constant 2] Deceleration time constant: setting value of [Pr. PC31 Deceleration time constant 2]
Station home position shift distance (Note 1, 2)	[Pr. PT40]	Set a shift distance of the station home position (station No. 0) for the home position return completion.

Note 1. The setting of the station home position shift distance is disabled at home position return. Cycling the power will enable the setting.
2. [Pr. PT40 Station home position shift distance] is enabled as an offset to the position that the home position return is performed. If a larger value than the in-position range is set to [Pr. PT40], the completion output of positioning will not turn on (short circuit) at the first power on after home position return.

6. HOW TO USE INDEXER

(2) Timing chart

Note 1. When the rest of command travel distance is other than " 0 ", turning on ST1 (Forward rotation start) will not be enabled.
2. Counting will start when the rest of command travel distance becomes "0".
3. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PS0 to PS7 cannot be outputted simultaneously.

6. HOW TO USE INDEXER

6.4.3 Torque limit changing data set type

POINT

When the data set type home position return is selected, [AL. 52] and [AL. 42] will not be detected.

- If the servo motor is rotated in the home position return mode and the mode is changed to automatic mode without home position return, the following may occur.

1. [AL. 42] or [AL. 52] can occur.
2. Even though [AL. 42] or [AL. 52] does not occur, the motor will try to compensate a position gap to the command position at start signal input because the current position is out of position with the command position. Watch out for the servo motor rotation due to the compensation the gap to zero between command position and current position.
OWhen [AL. 90] is occurring, performing home position return will automatically cancel the alarm.
When [AL. 25] is occurring, cycling the power will cancel the alarm.

When setting any position as home, use the torque limit changing data set type home position return. The JOG operation, manual pulse generator operation, and others can be used for the travel. With this home position return, torque will not be generated simultaneously at switching to the home position return mode. The shaft can be rotated with an external force to set any home position. Additionally, SIG is not used. SIG is disabled even if turn off.
(1) Device/parameter

Set input devices and parameters as follows.

Item	Used device/parameter	Setting
Home position return mode selection	MD0 (Operation mode selection 1)	Switch off MD0.
	MD1 (Operation mode selection 2)	Switch off MD1.
Data set type home position return	[Pr. PT04]	Select "____2" (Select the torque limit changing data set type.).
Station home position shift distance (Note 1, 2)	[Pr. PT40]	Set a shift distance of the station home position (station No. 0) for the home position return completion.

Note 1. The setting of the station home position shift distance is disabled at home position return. Cycling the power will enable the setting.
2. [Pr. PT40 Station home position shift distance] is enabled as an offset to the position that the home position return is performed. If a larger value than the in-position range is set to [Pr. PT40], the completion output of positioning will not turn on (short circuit) at the first power on after home position return.

6. HOW TO USE INDEXER

(2) Timing chart

Note 1. When a data set type home position return is performed, SIG will be disabled.
2. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PS0 to PS7 cannot be outputted simultaneously.

6. HOW TO USE INDEXER

6.4.4 Backlash compensation and digital override

(1) Backlash compensation

When executing a positioning reversely to the direction to the home position return, set [Pr. PT14 Backlash compensation] to stop the shaft at the compensated position for the setting value.
When the travel distance between stations is set to 1000 and the backlash compensation is set to 10 in the absolute position detection system, the timing chart is as follows.
(a) Torque limit changing dog type home position return

(b) Torque limit changing data set type

Backlash is compensated to the direction set with [Pr. PT38] regardless of a JOG operation (1)) or disturbance after power-on.

[Pr. PT38] setting	Backlash compensation
$" 0 __"$	Executes backlash compensation assuming a command to the CW rotation direction before home position return.
$" 1 __"$	Executes backlash compensation assuming a command to the CCW rotation direction before home position return.

6. HOW TO USE INDEXER

(2) Digital override

Setting [Pr. PT38] to "__ 1 _" enables the digital override function.
Actual servo motor speed will be the value multiplying the command speed by the digital override selected with OV0 (Digital override selection 1) to OV3 (Digital override selection 4). This is enabled with all the operation modes.

Example) [Pr. PT42]: 50, [Pr. PT43]: 5

(Note) Device				Description
OV3	OV2	OV1	OVO	
0	0	0	0	100 [\%] of parameter setting speed
0	0	0	1	50 [\%] of parameter setting speed
0	0	1	0	55 [\%] of parameter setting speed
0	0	1	1	60 [\%] of parameter setting speed
-	-	-	-	-
-	-	-	-	.
.	.	.	.	-
1	1	0	1	110 [\%] of parameter setting speed
1	1	1	0	115 [\%] of parameter setting speed
1	1	1	1	0 [\%] of parameter setting speed

Note. 0: Off
1: On
(a) When [Pr. PT42] is set to 50 and [Pr. PT43] to 5 in the automatic operation mode 1 (Rotation direction specifying indexer), the chart will be as follows.
Power supply
ALM (Malfunction)
MEND (Travel completion)
PSO (Station output 1) to
PS7 (Station output 8)
(Note)
DIO (Next station No. selection 1) to
DI7 (Next station No. selection 8)

Note. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PS0 to PS7 cannot be outputted simultaneously.

6. HOW TO USE INDEXER

POINT
Speed changes with the digital override function are enabled with the following conditions.

- Automatic operation mode
- Manual operation mode
- Home position return is in progress.
(b) When [Pr. PT42] is set to 50 and [Pr. PT43] to 5 in the station JOG operation, the chart will be as follows.

Power supply
ALM (Malfunction)
MEND (Travel completion)

PSO (Station output 1) to
PS7 (Station output 8) PS7 (Station output 8) (Note 3)
Servo motor speed
Servo motor speed
Current station position
Current station position
ST1 (Forward rotation start)
MDO (Operation mode selection 1)
MD1 (Operation mode selection 2)
OV0 (Digital override selection 1) to
OV3 (Digital override selection 4)

ON
OFF
O-
ON
OFF
ON
OFF

Note 1. In the manual operation mode, when turning on/off ST1 (Forward rotation start) with 0\% digital override and change the digital override to other than 0%, the shaft will stop at the closest station regardless of ST1 (Forward rotation start) off.
2. Changing the digital override to 0% during operation will decelerate to a stop. Then, the digital override is changed to 0\%, JOG operation will start again. In that case, the shaft stops at the closest station regardless of ST1 (Forward rotation start) off.
3. For MR-J4-03A6-RJ servo amplifiers, up to six points of DO are available; therefore, PS0 to PS7 cannot be outputted simultaneously.

6. HOW TO USE INDEXER

6.4.5 Safety precautions

(1) I/O signal
(a) When a home position return is not executed in the absolute position detection system and incremental system...
The station output signals will not be outputted (all off).
(b) When one or more home position returns is completed...

1) At power-on and forced stop, corresponding station output signal will be outputted if only it is within the in-position range of each next station position.
2) After power-on or during servo motor driving after forced stop, PS0 (Station output 1) to PS7 (Station output 8) will be off without change with a command travel distance other than "0" even if it is within the in-position range of target next station.
3) After power-on or after servo motor driving after forced stop canceled, corresponding station output signal will be outputted if only it is within the in-position range of target next station to stop with the rest of command travel distance " 0 ".
(2) Torque limit

The torque limit will change from the setting value of [Pr. PC35 Internal torque limit 2] to the setting value of [Pr. PA11 Forward rotation torque limit] or [Pr. PA12 Reverse rotation torque limit] at inputting ST1 (Forward rotation start) of the automatic operation mode 1, automatic operation mode 2, manual operation, and torque limit changing dog type home position return. Additionally, after positioning completed signal is outputted, the time has passed set with [Pr. PT39] and the torque limit will change from [Pr. PA11 Forward rotation torque limit] or [Pr. PA12 Reverse rotation torque limit] to the setting value of [Pr. PC35 Internal torque limit 2].
(3) Test operation

Always turn off the power after the JOG test operation, positioning test operation, and machine analyzer function operation. The shaft cannot stop at the next station position because the coordinate system has a gap for the shaft control.
(4) Deceleration to a stop function

When the operation is stopped with the deceleration to a stop function during each operation mode of the rotation direction specifying indexer, shortest rotating indexer, and station JOG, the shaft will stop regardless of the station position.

MEMO

\qquad

7. PARAMETERS

ONever make a drastic adjustment or change to the parameter values as doing so will make the operation unstable.
§CAUTION If fixed values are written in the digits of a parameter, do not change these values.
Do not change parameters for manufacturer setting.
Do not set a value other than the described values to each parameter.

POINT
The following parameters are not available with MR-J4-03A6-RJ servo amplifiers.

- [Pr. PA02 Regenerative option]
- [Pr. PA17 Servo motor series setting]
- [Pr. PA18 Servo motor type setting]
- [Pr. PA26 Function selection A-5]
- [Pr. PC44 Function selection C-9]
- [Pr. PC45 Function selection C-A]
- [Pr. PD47 Output device selection 7]
- [Pr. PE03 Fully closed loop function selection 2]
- [Pr. PE04 Fully closed loop control - Feedback pulse electronic gear 1 Numerator]
- [Pr. PE05 Fully closed loop control - Feedback pulse electronic gear 1 Denominator]
- [Pr. PE06 Fully closed loop control - Speed deviation error detection level]
- [Pr. PE07 Fully closed loop control - Position deviation error detection level]
- [Pr. PE08 Fully closed loop dual feedback filter]
- [Pr. PE10 Fully closed loop function selection 3]
- [Pr. PE34 Fully closed loop control - Feedback pulse electronic gear 2 Numerator]
- [Pr. PE35 Fully closed loop control - Feedback pulse electronic gear 2 Denominator]
- [Pr. PF25 SEMI-F47 function - Instantaneous power failure detection time]
- [Pr. PF34 RS-422 communication function selection 3]

Linear servo motor/DD motor setting parameters ([Pr. PL__]) cannot be used with MR-J4-03A6-RJ servo amplifiers.

7. PARAMETERS

7.1 Parameter list

POINT

To enable a parameter whose symbol is preceded by *, cycle the power after setting it.
Abbreviations of operation modes indicate the followings.
Standard: Standard (semi closed loop system) use of the rotary servo motor Full.: Fully closed loop system use of the rotary servo motor
Lin.: Linear servo motor use
DD: Direct drive (DD) motor use
-For MR-J4-03A6-RJ servo amplifiers, the operation mode is available only in standard (semi closed loop system).
The symbols in the control mode column mean as follows.
CP: Positioning mode (point table method)
BCD: Positioning mode (point table method in the BCD input positioning operation)
This method is available only when the MR-D01 unit is connected. Refer to chapter 12 for details.
CL: Positioning mode (program method)
PS: Positioning mode (indexer method)
-Setting a value out of the setting range in each parameter will trigger [AL. 37
Parameter error].
7.1.1 Basic setting parameters ([Pr. PA__])

POINT

To enable the following parameters in a positioning mode, cycle the power after setting.

- [Pr. PA06 Electronic gear numerator (command pulse multiplication numerator)/Number of gear teeth on machine side]
- [Pr. PA06 Electronic gear denominator (command pulse multiplication denominator)/Number of gear teeth on servo motor side]
- The following parameter cannot be used in the positioning mode.
- [Pr. PA05 Number of command input pulses per revolution]

		Name	Initial value	Unit	Operation mode				Control mode			
No.	Symbol				\|l		$\overline{\overline{\overline{3}}}$	$\stackrel{\text { ¢ }}{ \pm}$	O	O	נ	か
PA01	*STY	Operation mode	1000h	-	\bigcirc							
PA02	*REG	Regenerative option	0000h	S^{2}	\bigcirc							
PA03	*ABS	Absolute position detection system	0000h		\bigcirc							
PA04	*AOP1	Function selection A-1	2000h		\bigcirc							
PA05	*FBP	Number of command input pulses per revolution	10000			,		\checkmark	,		\triangle	
PA06	*CMX	Electronic gear numerator (command pulse multiplication numerator)	1		\bigcirc							
		Number of gear teeth on machine side	1		\bigcirc	-		\bigcirc	,		\bigcirc	
PA07	*CDV	Electronic gear denominator (command pulse multiplication denominator)	1		\bigcirc							
		Number of gear teeth on servo motor side	1		\bigcirc			\bigcirc			\bigcirc	
PA08	ATU	Auto tuning mode	0001h		\bigcirc							
PA09	RSP	Auto tuning response	16		\bigcirc							
PA10	INP	In-position range	100	$[\mu \mathrm{m}] /$ $10^{-4}[$ inch $] /$ $10^{-3}[$ degree $] /$ $[$ pulse $]$	\bigcirc							
PA11	TLP	Forward rotation torque limit/positive direction thrust limit	100.0	[\%]	\bigcirc							
PA12	TLN	Reverse rotation torque limit/negative direction thrust limit	100.0	[\%]	\bigcirc							
PA13	*PLSS	Command pulse input form	0100h	-	\bigcirc							
PA14	*POL	Rotation direction selection/travel direction selection	0		\bigcirc							
PA15	*ENR	Encoder output pulses	4000	[pulse/rev]	\bigcirc							
PA16	*ENR2	Encoder output pulses 2	1		\bigcirc							
PA17	*MSR	Servo motor series setting	0000h				\bigcirc	,	\bigcirc	\bigcirc	\bigcirc	
PA18	*MTY	Servo motor type setting	0000h				\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	
PA19	*BLK	Parameter writing inhibit	00AAh		\bigcirc							
PA20	*TDS	Tough drive setting	0000h		\bigcirc							
PA21	*AOP3	Function selection A-3	0001h		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
PA22		For manufacturer setting	0000h)				
PA23	DRAT	Drive recorder arbitrary alarm trigger setting	0000h		\bigcirc							
PA24	AOP4	Function selection A-4	0000h	T	\bigcirc							
PA25	OTHOV	One-touch tuning - Overshoot permissible level	0	[\%]	\bigcirc							
PA26	*AOP5	Function selection A-5	0000h		\bigcirc							
PA27		For manufacturer setting	0000h									
PA28			0000h									
PA29			0000h									
PA30			0000h									
PA31			0000h									
PA32			0000h									

7.1.2 Gain/filter setting parameters ([Pr. PB__])

					Operation mode				Control mode		
No.	Symbol	Name	Initial value	Unit		$\overline{\bar{亏}}$	$\stackrel{\Xi}{\leftrightharpoons}$	암	O ¢ ¢ O	-	の
PB01	FILT	Adaptive tuning mode (adaptive filter II)	0000h		\bigcirc						
PB02	VRFT	Vibration suppression control tuning mode (advanced vibration suppression control II)	0000h		\bigcirc						
PB03	PST	Position command acceleration/deceleration time constant (position smoothing)	0	[ms]	\bigcirc						
PB04	FFC	Feed forward gain	0	[\%]	\bigcirc						
PB05		For manufacturer setting	500)						
PB06	GD2	Load to motor inertia ratio/load to motor mass ratio	7.00	[Multiplier]	\bigcirc						
PB07	PG1	Model loop gain	15.0	[rad/s]	\bigcirc						
PB08	PG2	Position loop gain	37.0	[rad/s]	\bigcirc						
PB09	VG2	Speed loop gain	823	[rad/s]	\bigcirc						
PB10	VIC	Speed integral compensation	33.7	[ms]	\bigcirc						
PB11	VDC	Speed differential compensation	980		\bigcirc						
PB12	OVA	Overshoot amount compensation	0	[\%]	\bigcirc						
PB13	NH1	Machine resonance suppression filter 1	4500	[Hz]	\bigcirc						
PB14	NHQ1	Notch shape selection 1	0000h		\bigcirc						
PB15	NH2	Machine resonance suppression filter 2	4500	[Hz]	\bigcirc						
PB16	NHQ2	Notch shape selection 2	0000h		\bigcirc						
PB17	NHF	Shaft resonance suppression filter	0000h		\bigcirc						
PB18	LPF	Low-pass filter setting	3141	[rad/s]	\bigcirc						
PB19	VRF11	Vibration suppression control 1 - Vibration frequency	100.0	[Hz]	\bigcirc						
PB20	VRF12	Vibration suppression control 1 - Resonance frequency	100.0	[Hz]	\bigcirc						
PB21	VRF13	Vibration suppression control 1 - Vibration frequency damping	0.00		\bigcirc						
PB22	VRF14	Vibration suppression control 1 - Resonance frequency damping	0.00		\bigcirc						
PB23	VFBF	Low-pass filter selection	0000h		\bigcirc						
PB24	*MVS	Slight vibration suppression control	0000h		\bigcirc						
PB25	*BOP1	Function selection B-1	0000h		\bigcirc						
PB26	${ }^{*} \mathrm{CDP}$	Gain switching function	0000h		\bigcirc						
PB27	CDL	Gain switching condition	10	[kpulse/s]/ [pulse]/ [r/min]	\bigcirc						
PB28	CDT	Gain switching time constant	1	[ms]	\bigcirc						
PB29	GD2B	Load to motor inertia ratio/load to motor mass ratio after gain switching	7.00	[Multiplier]	\bigcirc						
PB30	PG2B	Position loop gain after gain switching	0.0	[rad/s]	\bigcirc						
PB31	VG2B	Speed loop gain after gain switching	0	[rad/s]	\bigcirc						
PB32	VICB	Speed integral compensation after gain switching	0.0	[ms]	\bigcirc						
PB33	VRF1B	Vibration suppression control 1 - Vibration frequency after gain switching	0.0	[Hz]	\bigcirc						
PB34	VRF2B	Vibration suppression control 1 - Resonance frequency after gain switching	0.0	[Hz]	\bigcirc						
PB35	VRF3B	Vibration suppression control 1 - Vibration frequency damping after gain switching	0.00		\bigcirc						
PB36	VRF4B	Vibration suppression control 1 - Resonance frequency damping after gain switching	0.00		\bigcirc						

7.1.3 Extension setting parameters ([Pr. PC__])

POINT

To enable the following parameters in a positioning mode, cycle the power after setting.

- [Pr. PC03 S-pattern acceleration/deceleration time constant]
- The following parameter cannot be used in the positioning mode.
- [Pr. PC04 Torque command time constant/thrust command time constant]
- [Pr. PC08 Internal speed command 4/internal speed limit 4]
- [Pr. PC09 Internal speed command 5/internal speed limit 5]
- [Pr. PC10 Internal speed command 6/internal speed limit 6]
- [Pr. PC11 Internal speed command 7/internal speed limit 7]
- [Pr. PC12 Analog speed command - Maximum speed/Analog speed limit -

Maximum speed]

- [Pr. PC13 Analog torque/thrust command maximum output]
- [Pr. PC23 Function selection C-2]
- [Pr. PC32 Command input pulse multiplication numerator 2]
- [Pr. PC33 Command input pulse multiplication numerator 3]
- [Pr. PC34 Command input pulse multiplication numerator 4]

The following parameters are used for Modbus-RTU communication. For details, refer to "MR-J4-_A_-RJ Servo Amplifier Instruction Manual (Modbus-RTU communication)".

- [Pr. PC70 Modbus-RTU communication station number setting]
- [Pr. PC71 Function selection C-F]
- [Pr. PC72 Function selection C-G]

No.	Symbol	Name	Initial value	Unit	Operation mode				Control mode						
						$\dot{\bar{亏}}$	$\stackrel{y}{J}$	Q		ठ	a				
PC14	MOD1	Analog monitor 1 output	0000h	S	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc				
PC15	MOD2	Analog monitor 2 output	0001h	T	0	\bigcirc	0	0	\bigcirc	0	\bigcirc				
PC16	MBR	Electromagnetic brake sequence output	0	[ms]	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc				
PC17	ZSP	Zero speed	50	[r/min]/ [mm / s]	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc				
PC18	*BPS	Alarm history clear	0000h	-	0	\bigcirc	0	0	0	0	0				
PC19	*ENRS	Encoder output pulse selection	0000h	S	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc				
PC20	*SNO	Station No. setting	0	[station]	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc				
PC21	*SOP	RS-422 communication function selection	0000h	-	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc				
PC22	*COP1	Function selection C-1	0000h		0	\bigcirc	0	0	0	\bigcirc	0				
PC23	*COP2	Function selection C-2	0000h												
PC24	*COP3	Function selection C-3	0000h	-	0	\bigcirc	0	0	0	\bigcirc	0				
PC25		For manufacturer setting	0000h	-											
PC26	*COP5	Function selection C-5	0000h		0	\bigcirc	0	0	0	\bigcirc	0				
PC27	*COP6	Function selection C-6	0000h		\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc				
PC28	*COP7	Function selection C-7	0000h				0		0	\bigcirc					
PC29	\bigcirc	For manufacturer setting	0000h	S											
PC30	STA2	Home position return acceleration time constant	0	[ms]	\bigcirc		0	0		0					
		Acceleration time constant 2			0			0			0				
PC31	STB2	Home position return deceleration time constant	0	[ms]	0		0	0		0					
		Deceleration time constant 2			0			0			0				
PC32	CMX2	Command input pulse multiplication numerator 2	1												
PC33	CMX3	Command input pulse multiplication numerator 3	1												
PC34	CMX4	Command input pulse multiplication numerator 4	1												
PC35	TL2	Internal torque limit 2/internal thrust limit 2	100.0	[\%]	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc				
PC36	*DMD	Status display selection	0000h		0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc				
PC37	VCO	Analog override offset	0	[mV]	0	0	0	0	\bigcirc	0					
PC38	TPO	Analog torque limit offset	0	[mV]	0	\bigcirc	0	0	0	\bigcirc	0				
PC39	MO1	Analog monitor 1 offset	0	[mV]	0	\bigcirc	0	0	0	0	\bigcirc				
PC40	MO2	Analog monitor 2 offset	0	[mV]	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc				
PC41		For manufacturer setting	0												
PC42			0												
PC43		Error excessive alarm detection level	0	[rev][mm]	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc				
PC44	*COP9	Function selection C-9	0000h			0			0	0					
PC45	*COPA	Function selection C-A	0000h			0	0		0	\bigcirc					
PC46		For manufacturer setting	0												
PC47			0												
PC48			0												
PC49			0												
PC50			0000h												
PC51	RSBR	Forced stop deceleration time constant	100	[ms]	0	\bigcirc	0	0	\bigcirc	\bigcirc	0				
PC52		For manufacturer setting	0				V	8							
PC53			0												
PC54	RSUP1	Vertical axis freefall prevention compensation amount	0	$\begin{gathered} {[0.0001 \mathrm{rev}] /} \\ {[0.01 \mathrm{~mm}]} \\ \hline \end{gathered}$	\bigcirc	\bigcirc	0	0	\bigcirc	O	0				
PC55		For manufacturer setting	0												
PC56			100				1								
PC57			0000h												
PC58			0				I								
PC59			0000h												
PC60	*COPD	Function selection C-D	0000h		0	,				0	0	D			

7. PARAMETERS

No.	Symbol	Name	Initial value	Unit	Operation mode				Control mode		
						$\dot{\overline{\mathrm{I}}}$	$\stackrel{y}{\Xi}$	O	0 0 0 0 0	U	0
PC61		For manufacturer setting	0000h								
PC62			0000h								
PC63			0000h								
PC64			0000h								
PC65			0000h								
PC66	LPSPL	Mark detection range + (lower three digits)	0	$10^{\text {STM }}[\mu \mathrm{m}] /$ $10^{-(\text {STM-4) }}[$ inch $] /$ $10^{-3}[$ degree $/$ $[$ pulse $]$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	人
PC67	LPSPH	Mark detection range + (upper three digits)	0	$10^{\text {STM }}[\mu \mathrm{m}] /$ $10^{-(\text {STM-4) }}[$ inch $] /$ $10^{-3}[$ degree $/$ [pulse]	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\}
PC68	LPSNL	Mark detection range - (lower three digits)	0	$10^{\text {STM }}[\mu \mathrm{m}] /$ $10^{-(\text {STM }-4)}[$ inch $] /$ $10^{-3}[$ degree $]$ $[$ pulse $]$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\}
PC69	LPSNH	Mark detection range - (upper three digits)	0	$10^{\text {STM }}[\mu \mathrm{m}] /$ $10^{-(\text {STM }-4)}[$ inch $] /$ $10^{-3}[$ degree $/ /$ $[$ pulse $]$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\}
PC70	*SNOM	Modbus-RTU communication station number setting	0		\bigcirc						
PC71	*COPF	Function selection C-F	0040h	${ }^{2}$	\bigcirc						
PC72	*COPG	Function selection C-G	0000h		\bigcirc						
PC73	ERW	Error excessive warning level	0	-	\bigcirc						
PC74		For manufacturer setting	0000h								
PC75			0000h								
PC76			0000h		-						
PC77			0000h			-	-			,	
PC78			0000h		,			-	-	,	
PC79			0000h				-			,	
PC80			0000h							,	

7.1.4 I/O setting parameters ([Pr. PD__])

POINT

The following parameter cannot be used in the positioning mode.

- [Pr. PD03 Input device selection 1L]
- [Pr. PD05 Input device selection 2L]
- [Pr. PD07 Input device selection 3L]
- [Pr. PD09 Input device selection 4L]
- [Pr. PD11 Input device selection 5L]
- [Pr. PD13 Input device selection 6L]
- [Pr. PD17 Input device selection 8L]
- [Pr. PD19 Input device selection 9L]
- [Pr. PD21 Input device selection 10L]
- [Pr. PD43 Input device selection 11L]
- [Pr. PD45 Input device selection 12L]

		Name	Initial value	Unit	Operation mode				Control mode		
No．	Symbol				（1）	$\overline{\overline{\bar{L}}}$	$\stackrel{\text { S }}{ }$	人	－	O	¢
PD35		For manufacturer setting	0000h								
PD36			0000h								
PD37			0000h								
PD38			0								
PD39			0								
PD40			0								
PD41	＊DIA3	Input signal automatic on selection 3	0000h	$\xrightarrow{-}$	0	\bigcirc	0	0	0	0	0
PD42	＊DIA4	Input signal automatic on selection 4	0000h	－	0	\bigcirc	0	0	\bigcirc	0	\bigcirc
PD43	＊DI11L	Input device selection 11L	0000h	Ser			－				
PD44	＊DI11H	Input device selection 11H	3A00h	S	0	\bigcirc	0	0	0	\bigcirc	0
PD45	＊DI12L	Input device selection 12L	0000h	－							
PD46	＊DI12H	Input device selection 12H	3B00h	－	0	\bigcirc	0	\bigcirc	0	0	\bigcirc
PD47	＊DO7	Output device selection 7	0000h	S	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc
PD48	－	For manufacturer setting	0000h		，						

7．1．5 Extension setting 2 parameters（［Pr．PE＿＿］）

POINT
－The following parameter cannot be used in the positioning mode． －［Pr．PE01 Fully closed loop function selection 1］

						Oper mo	$\begin{aligned} & \text { atio } \\ & \text { de } \end{aligned}$			ntr	
No．	Symbol	Name	Initial value	Unit	京	言	$\stackrel{\text { ¢ }}{\square}$	－	O 0 m O	Ј	の
PE01	＊FCT1	Fully closed loop function selection 1	0000h								
PE02	${ }^{-}$	For manufacturer setting	0000h								
PE03	＊FCT2	Fully closed loop function selection 2	0003h			\bigcirc			\bigcirc	\bigcirc	
PE04	＊FBN	Fully closed loop control－Feedback pulse electronic gear 1－ Numerator	1			\bigcirc			\bigcirc	\bigcirc	
PE05	＊FBD	Fully closed loop control－Feedback pulse electronic gear 1 － Denominator	1			\bigcirc			\bigcirc	\bigcirc	－
PE06	BC1	Fully closed loop control－Speed deviation error detection level	400	［r／min］		\bigcirc			\bigcirc	\bigcirc	
PE07	BC2	Fully closed loop control－Position deviation error detection level	100	［kpulse］		\bigcirc			\bigcirc	\bigcirc	
PE08	DUF	Fully closed loop dual feedback filter	10	［rad／s］		\bigcirc			0	\bigcirc	
PE09		For manufacturer setting	0000h								
PE10	FCT3	Fully closed loop function selection 3	0000h			0			O	\bigcirc	
PE11		For manufacturer setting	0000h								
PE12			0000h								
PE13			0000h								
PE14			0111h								
PE15			20								
PE16			0000h								
PE17			0000h								
PE18			0000h								
PE19			0000h								
PE20			0000h								
PE21			0000h								

7.1.6 Extension setting 3 parameters ([Pr. PF ${ }_{-}$])

POINT

The following parameters are used for Modbus-RTU communication. For details, refer to "MR-J4-_A_-RJ Servo Amplifier Instruction Manual (Modbus-RTU communication)".

- [Pr. PF45 Function selection F-12]
- [Pr. PF46 Modbus-RTU communication time-out selection]

		Name	Initial value	Unit	Operation mode				Control mode				
No.	Symbol					$\overline{\overline{\overline{1}}}$	立	-	O	Ј	の		
PF01		For manufacturer setting	0000h										
PF02			0000h										
PF03			0000h										
PF04			0										
PF05			0										
PF06			0000h										
PF07			1										
PF08			1										
PF09	*FOP5	Function selection F-5	0000h		\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc		
PF10		For manufacturer setting	0000h								\}		
PF11			0000h										
PF12			10000										
PF13			100										
PF14			100										
PF15	DBT	Electronic dynamic brake operating time	2000	[ms]	\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc		
PF16		For manufacturer setting	0000h						\bigcirc		F		
PF17			10										
PF18			0000h										
PF19			0000h										
PF20			0000h										
PF21	DRT	Drive recorder switching time setting	0	[s]	\bigcirc								
PF22		For manufacturer setting	200		-								
PF23	OSCL1	Vibration tough drive - Oscillation detection level	50	[\%]	\bigcirc								
PF24	*OSCL2	Vibration tough drive function selection	0000h		\bigcirc								
PF25	CVAT	SEMI-F47 function - Instantaneous power failure detection time	200	[ms]	\bigcirc								
PF26		For manufacturer setting	0				V	\checkmark	\checkmark	\checkmark	\}		
PF27			0										
PF28			0										
PF29			0000h										
PF30			0										
PF31	FRIC	Machine diagnosis function - Friction judgement speed	0	[r/min]/ [mm/s]	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
PF32		For manufacturer setting	50										
PF33			0000h										
PF34		RS-422 communication function selection 3	0000h		\bigcirc								

7.1.7 Linear servo motor/DD motor setting parameters ([Pr. PL_{-}_])

7.1.8 Option setting parameters ([Pr. Po__])

		Name	Initial value	Unit	Operation mode				Control mode		
No.	Symbol					$\overline{\overline{\bar{u}}}$	$\stackrel{\text { ¢ }}{ \pm}$	-	O 0 0 0 0	Ј	の
Po01	-	For manufacturer setting	0000h								
Po02	*ODI1	MR-D01 input device selection 1	0302h		\bigcirc						
Po03	*ODI2	MR-D01 input device selection 2	0905h		\bigcirc						
Po04	*ODI3	MR-D01 input device selection 3	2524h		\bigcirc						
Po05	*ODI4	MR-D01 input device selection 4	2026h		\bigcirc						
Po06	*ODI5	MR-D01 input device selection 5	0427h		\bigcirc						
Po07	*ODI6	MR-D01 input device selection 6	0807h		\bigcirc						
Po08	*ODO1	MR-D01 output device selection 1	2726h		\bigcirc						
Po09	*ODO2	MR-D01 output device selection 2	0423h		\bigcirc						
Po10	*OOP1	Function selection O-1	2001h		\bigcirc						
Po11	*OOP2	Function selection O-2	0000h		\bigcirc						
Po12	*OOP3	Function selection O-3	0000h		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
Po13	*OMOD1	MR-D01 analog monitor 1 output selection	0000h		\bigcirc						
Po14	*OMOD2	MR-D01 analog monitor 2 output selection	0000h		\bigcirc						
Po15	OMO1	MR-D01 analog monitor 1 offset	0	[mV]	\bigcirc						
Po16	OMO2	MR-D01 analog monitor 2 offset	0	[mV]	\bigcirc						
Po17		For manufacturer setting	0000h						\checkmark		
Po18			0000h								
Po19			0000h								
Po20			0000h								
Po21	OVCO	MR-D01 override offset	0	[mV]	\bigcirc						
Po22	OTLO	MR-D01 override offset	0	[mV]	\bigcirc						

		Name	Initial value	Unit	Operation mode			Control mode									
No．	Symbol					产	－	O	U	の							
Po23		For manufacturer setting	0000h						{$\$} & \multirow[t]{4}{*}{V} \hline Po24 & & & 0000h & & & & & & & \hline Po25 & & & 0000h & & & & & & & \hline Po26 & & & 0000h & & & & & & & \hline Po27 & ＊ODI7 & MR－D01 input device selection 7 & 2D2Ch & & & \checkmark		，						
Po28			002Eh														
Po29			0000h														
Po30			0000h														
Po31			0000h														
Po32			0000h														

7．1．9 Positioning control parameters（［Pr． $\mathrm{PT}_{-_}$］）

POINT

OThe following parameters are used for Modbus－RTU communication．For details， refer to＂MR－J4－＿A＿－RJ Servo Amplifier Instruction Manual（Modbus－RTU communication）＂．
－［Pr．PT45 Home position return type 2］

		Name	Initial value	Unit	Operation mode				Control mode		
No．	Symbol				［	$\dot{\bar{\rightharpoonup}}$	$\stackrel{\text { ¢ }}{\square}$	0	O	נ	の
PT01	＊CTY	Command mode selection	0000h	－	\bigcirc						
PT02	＊TOP1	Function selection T－1	0000h	－	\bigcirc						
PT03	＊FTY	Feeding function selection	0000h	$\xrightarrow{\text {－}}$	\bigcirc						
PT04	＊ZTY	Home position return type	0010h	－	\bigcirc						
PT05	ZRF	Home position return speed	100	［r／min］／［mm／s］	\bigcirc						
PT06	CRF	Creep speed	10	［r／min］／ ［mm／s］	\bigcirc						
PT07	ZST	Home position shift distance	0	$[\mu \mathrm{m}] /$ $10^{-4}[$ inch $] / 10^{-3}$ $[$ degree $/$ ［pulse］	\bigcirc						
PT08	＊ZPS	Home position return position data	0	$10^{\text {STM }}[\mu \mathrm{m}] /$ $10^{-(\text {STM－4）}}[$ inch $] /$ $10^{-3}[$ degree $]$ $[$ pulse $]$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\checkmark
PT09	DCT	Travel distance after proximity dog	1000	$10^{\text {STM }}[\mu \mathrm{m}] /$ $10^{-(\text {STM－4）}}[$ inch $] /$ $10^{-3}[$ degree $] /$ $[$ pulse $]$	O	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	人
PT10	ZTM	Stopper type home position return stopper time	100	［ms］	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
PT11	ZTT	Stopper type home position return torque limit value	15.0	［\％］	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
PT12	CRP	Rough match output range	0	$10^{\text {STM }}[\mu \mathrm{m}] /$ $10^{-(\text {STM－4）}}[$ inch $] /$ $10^{-3}[$ degree $]$ $[$ pulse $]$	\bigcirc						
PT13	JOG	JOG operation	100	［r／min］／ ［mm／s］	\bigcirc						
PT14	＊BKC	Backlash compensation	0	［pulse］	\bigcirc						

7.2 Detailed list of parameters

POINT

Set a value to each " x " in the "Setting digit" columns.

7.2.1 Basic setting parameters ([Pr. PA__])

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				0 0 0 0 0	Ј	¢
PA01 *STY Operation mode	- - - ${ }^{\text {x }}$	Control mode selection Select a control mode. 0 to 5: Not used for positioning mode. 6: Positioning mode (point table method) 7: Positioning mode (program method) 8: Positioning mode (indexer method)	Oh	\bigcirc	\bigcirc	\bigcirc
	$\sim_{--}{ }^{\text {_ }}$	Operation mode selection 0 : Standard control mode 1: Fully closed loop control mode 4. Linear servo motor control mode 6: DD motor control mode (except 400 V class servo amplifiers) The following settings will trigger [AL. 37 Parameter error]. - A value is set other than " 0 ", " 1 ", " 4 ", and " 6 " to this digit. - "1" or "4" is set to this digit with the indexer method. - "1" or "4" is set to this digit when "Position data unit" is set to [degree] in [Pr. PT01]. For MR-J4-03A6-RJ servo amplifiers, this digit cannot be used other than the initial value.	Oh	\bigcirc	\bigcirc	\bigcirc
	X_{-}	For manufacturer setting	Oh			
			1h			
PA02 *REG Regenerative option	-_xx	Regenerative option Select a regenerative option. Incorrect setting may cause the regenerative option to burn. If a selected regenerative option is not for use with the servo amplifier, [AL. 37 Parameter error] occurs. 00: Regenerative option is not used. - For the servo amplifiers of 100 W , a regenerative resistor is not used. - For servo amplifier of 0.2 kW to 7 kW , built-in regenerative resistor is used. - Supplied regenerative resistors or regenerative option is used with the servo amplifier of 11 kW to 22 kW . 01: FR-RC-(H)/FR-CV-(H)/FR-BU2-(H) When you use FR-RC-(H) or FR-CV-(H), select "Mode $\left.2\left(__{-}\right)_{1}\right)$ " of "Undervoltage alarm detection mode selection" in [Pr. PC27]. 02: MR-RB032 03: MR-RB12 04: MR-RB32 05: MR-RB30 06: MR-RB50 (Cooling fan is required.) 08: MR-RB31 09: MR-RB51 (Cooling fan is required.) 0B: MR-RB3N OC: MR-RB5N (Cooling fan is required.) 80: MR-RB1H-4 81: MR-RB3M-4 (Cooling fan is required.) 82: MR-RB3G-4 (Cooling fan is required.) 83: MR-RB5G-4 (Cooling fan is required.) 84: MR-RB34-4 (Cooling fan is required.) 85: MR-RB54-4 (Cooling fan is required.) 91: MR-RB3U-4 (Cooling fan is required.) 92: MR-RB5U-4 (Cooling fan is required.) FA: When the supplied regenerative resistors or the regenerative option is cooled by the cooling fan to increase the ability with the servo amplifier of 11 kW to 22 kW . For MR-J4-03A6-RJ servo amplifiers, this digit cannot be used other than the initial value. For manufacturer setting	00h	\bigcirc	\bigcirc	\bigcirc
	_ X_{-}		Oh			
			Oh			

7. PARAMETERS

No./ symbol/name	Setting digit	Function				Initial value [unit]	Control mode			
						O 0 0 0 0	Ј	の		
PA03 *ABS Absolute position detection system	---x	Absolute position detection system selection Set this digit when using the absolute position detection system. 0 : Disabled (incremental system) 1:Enabled (absolute position detection system) 2: Not used for positioning mode. Setting a value other than "0" and "1" will trigger [AL. 37 Parameter error].					Oh	\bigcirc	\bigcirc	\bigcirc
	- x	For manufacturer setting				Oh				
	- ${ }^{\text {x }}$--					Oh				
	$\mathrm{x}_{\text {_- }}{ }^{\text {d }}$					Oh				
$\begin{array}{\|l\|} \hline \text { PA04 } \\ \text { *AOP1 } \\ \text { Function } \\ \text { selection A-1 } \end{array}$	---x	For manufacturer setting				Oh				
	$-_{-} x^{x}$					Oh				
	${ }_{-}{ }^{\text {x }}$ -					Oh				
	$\mathrm{X}_{\text {- }--}$	Forced stop deceleration function selection 0: Forced stop deceleration function disabled (EM1) 2: Forced stop deceleration function enabled (EM2) Refer to table 7.1 for details.				2h	\bigcirc	\bigcirc	\bigcirc	
		Table 7.1 Deceleration method								
		Setting value	EM2/EM1	Deceleration method						
				EM2 or EM1 is off	Alarm occurred					
		0__-	EM1	MBR (Electromagnetic brake interlock) turns off without the forced stop deceleration.	MBR (Electromagnetic brake interlock) turns off without the forced stop deceleration.					
		$2 \ldots$	EM2	MBR (Electromagnetic brake interlock) turns off after the forced stop deceleration.	MBR (Electromagnetic brake interlock) turns off after the forced stop deceleration.					

		Function		Initial value [unit]	Control mode			
No.l symbol/name	Setting digit			0 0 ¢ U	U	®		
PA06 *CMX Electronic gear numerator (command pulse multiplication numerator)		Set an electronic gear numerator. (Refer to section 7.3.1.) To enable the parameter values in the positioning mode, cycle the power after setting. To enable the parameter, select "Electronic gear ($0 __$_ $)$", "J3 electronic gear setting value compatibility mode ($2 \ldots \ldots$)", or "J2S electronic gear setting value compatibility mode (3 _ __)" of "Electronic gear selection" in [Pr. PA21]. For MR-J4-03A6-RJ servo amplifiers, "J3 electronic gear setting value compatibility mode (2 _ _ _)" and "J2S electronic gear setting value compatibility mode (3 _ _ _)" cannot be selected. Set the electronic gear within the following range. Setting out of the range will trigger [AL. 37 Parameter error]. Setting range: 1 to 16777215			1	\bigcirc	\bigcirc	
PA06 *CMX Number of gear teeth on machine side		Set the number of gear teeth on machine side. (Refer to section 7.3.2.) To enable the parameter values in the positioning mode, cycle the power after setting. Set the electronic gear within the following range. (1) $1 \leq C M X \leq 16384,1 \leq C D V \leq 16384$ (2) $\frac{1}{9999} \leq \frac{C M X}{C D V} \leq 9999$ (3) $\mathrm{CDV} \times$ STN ≤ 32767 (STN: Number of stations per rotation [Pr. PT28]) (4) $C M X \times C D V \leq 100000$ Setting out of the range will trigger [AL. 37 Parameter error]. When a small value is set to the electronic gear ratio with the manual operation mode, the servo motor may not drive at the set servo motor speed. $\text { Travel distance of } 1 \text { station }=P t \text { (servo motor resolution) } \times \frac{1}{S T N} \times \frac{\mathrm{CMX}}{\mathrm{CDV}}$ Setting range: 1 to 16777215		1			\bigcirc	
PA07 *CDV Electronic gear denominator (command pulse multiplication denominator)		Set an electronic gear denominator. (Refer to section 7.3.1.) To enable the parameter values in the positioning mode, cycle the power after setting. To enable the parameter, select "Electronic gear (0 _ _ $)$ ", "J3 electronic gear setting value compatibility mode (2 _ _)", or "J2S electronic gear setting value compatibility mode (3 ___)" of "Electronic gear selection" in [Pr. PA21]. For MR-J4-03A6-RJ servo amplifiers, " J 3 electronic gear setting value compatibility mode (2 _ _ $)$ " and "J2S electronic gear setting value compatibility mode ($3 \ldots$ _ $)$ " cannot be selected. Set the electronic gear within the range of [Pr. PA06]. Setting out of the range will trigger [AL. 37 Parameter error]. Setting range: 1 to 16777215		1	\bigcirc	\bigcirc		
PA07 *CDV Number of gear teeth on servo motor side		Set the number of gear teeth on servo motor side. (Refer to section 7.3.2.) To enable the parameter values in the positioning mode, cycle the power after setting. Set the electronic gear within the range of [Pr. PA06]. Setting out of the range will trigger [AL. 37 Parameter error]. Setting range: 1 to 16777215		1	V	-	\bigcirc	

7. PARAMETERS

No./ symbol/name	Setting digit	Function		Initial value [unit]	Control mode			
				O-	-	の		
PA08 ATU Auto tuning mode		Gain adjustment mode selection Select the gain adjustment mode. 0: 2 gain adjustment mode 1 (interpolation mode) 1: Auto tuning mode 1 2: Auto tuning mode 2 3: Manual mode 4: 2 gain adjustment mode 2 Refer to table 7.2 for details.			1h	\bigcirc	\bigcirc	\bigcirc
	$\chi_{-} \mathrm{x}_{-}$For	For manufacturer setting		Oh				
	x_{-}			Oh				
	$\mathrm{X}_{\text {_- }}$			Oh				
	Table 7.2 Gain adjustment mode selection							
	Setting value	Gain adjustment mode	Automatically adjusted parameter					
	---0	2 gain adjustment mode 1 (interpolation mode)	[Pr. PB06 Load to motor inertia ratio] [Pr. PB08 Position loop gain] [Pr. PB09 Speed loop gain] [Pr. PB10 Speed integral compensation]					
	---1	Auto tuning mode 1	[Pr. PB06 Load to motor inertia ratio] [Pr. PB07 Model loop gain] [Pr. PB08 Position loop gain] [Pr. PB09 Speed loop gain] [Pr. PB10 Speed integral compensation]					
	$--{ }^{2}$	Auto tuning mode 2	[Pr. PB07 Model loop gain] [Pr. PB08 Position loop gain] [Pr. PB09 Speed loop gain] [Pr. PB10 Speed integral compensation]					
	---3	Manual mode						
		2 gain adjustment mode 2	[Pr. PB08 Position loop gain] [Pr. PB09 Speed loop gain] [Pr. PB10 Speed integral compensation]					

No.l symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O 0 0 O	Ј	¢
PA11 TLP Forward rotation torque limit/positive direction thrust limit		You can limit the torque or thrust generated by the servo motor. Set the parameter referring section 3.6.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". When you output torque or thrust with analog monitor output, the larger value of [Pr. PA11 Forward rotation torque limit/positive direction thrust limit value] or [Pr. PA12 Reverse rotation torque limit/negative direction thrust limit value] will be the maximum output voltage (8 V). Set the parameter on the assumption that the maximum torque or thrust is 100.0 [\%]. The parameter is for limiting the torque of the servo motor in the CCW power running or CW regeneration, or limiting the thrust of the linear servo motor in the positive direction power running or negative direction regeneration. Set this parameter to " 0.0 " to generate no torque or thrust. Setting range: 0.0 to 100.0	$\begin{gathered} 100.0 \\ {[\%]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PA12 TLN Reverse rotation torque limit/negative direction thrust limit		You can limit the torque or thrust generated by the servo motor. Set the parameter referring section 3.6.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". When you output torque or thrust with analog monitor output, the larger value of [Pr. PA11 Forward rotation torque limit/positive direction thrust limit value] or [Pr. PA12 Reverse rotation torque limit/negative direction thrust limit value] will be the maximum output voltage (8 V). Set the parameter on the assumption that the maximum torque or thrust is 100.0 [\%]. The parameter is for limiting the torque of the servo motor in the CW power running or CCW regeneration, or limiting the thrust of the linear servo motor in the positive direction power running or negative direction regeneration. Set this parameter to " 0.0 " to generate no torque or thrust. Setting range: 0.0 to 100.0	$\begin{gathered} 100.0 \\ {[\%]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PA13 *PLSS Command pulse input form	--_x	Command input pulse train form selection 0: Forward/reverse rotation pulse train 1: Signed pulse train 2: A-phase/B-phase pulse train (The servo amplifier imports input pulses after multiplying by four.) When connecting the manual pulse generator MR-HDP01 in the positioning mode, set "2" to this digit. Refer to table 7.3 for settings.	Oh	\bigcirc	\bigcirc	
	-- ${ }^{\text { }}$	Pulse train logic selection 0 : Positive logic 1: Negative logic Select the same one as logic of command pulse train from controller to connect. Refer to POINT of section 3.6.1 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" for logic of MELSEC iQ-R series/MELSEC-Q series/MELSEC-L series/MELSEC-F series. When connecting the manual pulse generator MR-HDP01 in the positioning mode, set " 0 " to this digit. Refer to table 7.3 for settings.	Oh	\bigcirc	\bigcirc	

No./ symbol/name	Setting digit	Function				Initial value [unit]	Control mode			
						0 0 m 0 0	Ј	の		
PA13 *PLSS Command pulse input form		Command input pulse train filter selection Selecting proper filter enables to enhance noise tolerance. 0 : Command input pulse train is 4 Mpulses/s or less. 1: Command input pulse train is 1 Mpulse/s or less. 2: Command input pulse train is $500 \mathrm{kpulses} / \mathrm{s}$ or less. 3: Command input pulse train is 200 kpulses/s or less. 1 Mpulse/s or lower commands are supported by "1". When inputting commands over 1 Mpulse/s and 4 Mpulses/s or lower, set "0". When connecting the manual pulse generator MR-HDP01 in the positioning mode, set " 2 " or " 3 " to this digit. Incorrect setting may cause the following malfunctions. - Setting a value higher than actual command will lower noise tolerance. - Setting a value lower than actual command will cause a position mismatch.					1h	\bigcirc	\bigcirc	
	$\mathrm{x}_{\text {_ }}$ - \quad For manufacturer setting					Oh				
	Table 7.3 Command input pulse train form selection									
	Setting value	Pulse train form		Forward rotation (positive direction)command	Reverse rotation (negative direction)command					
	-_ 10		Forward rotation pulse train (positive direction pulse train) Reverse rotation pulse train (negative direction pulse train)							
	-- ${ }^{11}$		Signed pulse train							
	-_ ${ }^{12}$		A-phase pulse train B-phase pulse train	PP						
	-_00	-	Forward rotation pulse train (positive direction pulse train) Reverse rotation pulse train (negative direction pulse train)							
	-_0 1		Signed pulse train	$\mathrm{NP} \frac{\mathrm{PP}}{\mathrm{H}}$	$44 \square$ G L					
	-_02		A-phase pulse train B-phase pulse train	PP						
	Arrows in the table indicate the timing of importing pulse trains. A-phase/B-phase pulse trains are imported after they have been multiplied by 4 . When connecting the manual pulse generator MR-HDP01 in the positioning mode, set "__ 02h".									

No./ symbol/name	Setting digit	Function			Initial value [unit]	Control mode			
					O 0 0 0 0 0	Ј	®		
PA14 *POL Rotation direction selection/trav el direction selection		Select a rotation direction of the servo motor or travel direction of the linear servo motor for when turning on ST1 (Forward rotation start) or ST2 (Reverse rotation start). The following shows the servo motor rotation directions. The positive/negative directions of the linear servo motor are as follows. Setting range: 0,1				0	\bigcirc	\bigcirc	O
PA15 *ENR Encoder output pulses		Set the encod pulses per re Set a numera electronic gea [Pr. PC19]. The maximum Setting range:	der output pulses from the s volution, dividing ratio, or el tor of the electronic gear, fo ar setting (_ _ 3 _)" of "Enco output frequency is 4.6 Mp : 1 to 4194304	rvo amplifier by using the number of output ctronic gear ratio. (after multiplication by 4) when selecting "A-phase/B-phase pulse der output pulse setting selection" in ulses/s. Set the parameter within this range.	$\begin{gathered} 4000 \\ \text { [pulse/ } \end{gathered}$ rev]	\bigcirc	\bigcirc	\bigcirc	
PA16 *ENR2 Encoder output pulses 2		Set a denom Set a denom electronic ge [Pr. PC19]. Setting range:	nator of the electronic gear nator of the electronic gear, r setting (_ _ 3 _)" of "Enco : 1 to 4194304	for the A/B-phase pulse output. for when selecting "A-phase/B-phase pulse der output pulse setting selection" in	1	\bigcirc	\bigcirc	0	

7. PARAMETERS

No./ symbol/name	Setting digit	Function				Initial value [unit]	Control mode			
						O	Ј	の		
PA17 *MSR Servo motor series setting		When using a linear servo motor, select any linear servo motor with [Pr. PA17] and [Pr. PA18]. Set this and [Pr. PA18] at a time. Refer to the following table for settings. This parameter is not available with MR-J4-03A6-RJ servo amplifiers.					0000h	\bigcirc	\bigcirc	
		Linear servo motor	Linear servo motor							
		series	(primary side)	$\begin{gathered} \text { [Pr. PA17] } \\ \text { setting } \end{gathered}$	$\begin{gathered} \text { [Pr. PA18] } \\ \text { setting } \end{gathered}$					
			LM-H3P2A-07P-BSS0		2101h					
			LM-H3P3A-12P-CSS0		3101h					
			LM-H3P3B-24P-CSS0		3201h					
			LM-H3P3C-36P-CSS0		3301h					
		LM-H3	LM-H3P3D-48P-CSS0	00BBh	3401h					
			LM-H3P7A-24P-ASS0		7101h					
			LM-H3P7B-48P-ASS0		7201h					
			LM-H3P7C-72P-ASS0		7301h					
			LM-H3P7D-96P-ASS0		7401h					
			LM-U2PAB-05M-0SS0		A201h					
			LM-U2PAD-10M-0SS0		A401h					
			LM-U2PAF-15M-0SS0		A601h					
			LM-U2PBB-07M-1SS0		B201h					
		LM-U2	LM-U2PBD-15M-1SS0	00B4h	B401h					
			LM-U2PBF-22M-1SS0		2601h					
			LM-U2P2B-40M-2SS0		2201h					
			LM-U2P2C-60M-2SS0		2301h					
			LM-U2P2D-80M-2SS0		2401h					

		Function	Initial value [unit]	Control mode		
No./ symbol/name	Setting digit			$\begin{aligned} & \text { O} \\ & \text { ભ } \\ & \text { O} \end{aligned}$	Ј	の
PA18 *MTY Servo motor type setting		When using a linear servo motor, select any linear servo motor with [Pr. PA17] and [Pr. PA18]. Set this and [Pr. PA17] at a time. Refer to the table of [Pr. PA17] for settings. This parameter is not available with MR-J4-03A6-RJ servo amplifiers.	0000h	\bigcirc	\bigcirc	人
PA19 *BLK Parameter writing inhibit		Select a reference range and writing range of the parameter. To enable read/write the positioning control parameters ([Pr. PT__]), set [Pr. PA19] to " 00 A B " in the positioning mode. Refer to table 7.4 for settings. Linear servo motor/DD motor setting parameters ([Pr. PL_ _]) cannot be used with MR-J4-03A6-RJ servo amplifiers.	00AAh	\bigcirc	\bigcirc	\bigcirc

Table 7.4 [Pr. PA19] setting value and reading/writing range

PA19	Setting operation	PA	PB	PC	PD	PE	PF	PL	Po	PT
Other than below	Reading	\bigcirc								
	Writing	\bigcirc								
000Ah	Reading	Only 19								
	Writing	Only 19								
000Bh	Reading	\bigcirc	\bigcirc	\bigcirc						
	Writing	\bigcirc	\bigcirc	\bigcirc						
000Ch	Reading	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
	Writing	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
00AAh (initial value)	Reading	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
	Writing	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
00ABh	Reading	\bigcirc								
	Writing	\bigcirc								
100Bh	Reading	\bigcirc								
	Writing	Only 19								
100Ch	Reading	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
	Writing	Only 19								
10AAh	Reading	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
	Writing	Only 19								
10ABh	Reading	\bigcirc								
	Writing	Only 19								

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O	Ј	の
PA20 *TDS Tough drive setting	Alarms may not be avoided with the tough drive function depending on the situations of the power supply and load fluctuation. You can assign MTTR (During tough drive) to pins CN1-13, CN1-14, CN1-22 to CN1-25, and CN1-49 with [Pr. PD23] to [Pr. PD26], [Pr. PD28], and [Pr. PD47]. For MR-J4-03A6-RJ servo amplifiers, MTTR (During tough drive) cannot be assigned.					
	$\ldots-\quad x$	```For manufacturer setting Vibration tough drive selection 0: Disabled 1: Enabled Selecting "1" enables to suppress vibrations by automatically changing setting values of [Pr. PB13 Machine resonance suppression filter 1] and [Pr. PB15 Machine resonance suppression filter 2] in case that the vibration exceed the value of the oscillation level set in [Pr. PF23]. To output the oscillation detection alarm as a warning, set [Pr. PF24 Vibration tough drive function selection]. For details, refer to section 7.3 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".```	Oh	$>$	\triangle	
	${ }_{--} x_{-}$		Oh	\bigcirc	\bigcirc	\bigcirc
		SEMI-F47 function selection 0 : Disabled 1: Enabled Selecting "1" enables to avoid triggering [AL. 10 Undervoltage] using the electrical energy charged in the capacitor in case that an instantaneous power failure occurs during operation. In [Pr. PF25 SEMI-F47 function - Instantaneous power failure detection time], set the time until the occurrence of [AL. 10.1 Voltage drop in the control circuit power]. For MR-J4-03A6-RJ servo amplifiers, this digit cannot be used other than the initial value.	Oh	\bigcirc	\bigcirc	\bigcirc
	$\mathrm{x}_{\text {_-- }}$	For manufacturer setting	Oh			
PA21 *AOP3 Function selection A-3	$--^{x}$	One-touch tuning function selection 0 : Disabled 1: Enabled When the digit is " 0 ", the one-touch tuning is not available.	1h	\bigcirc	\bigcirc	\bigcirc
	- ${ }^{\text {x }}$	For manufacturer setting	Oh			
			Oh			
	$\frac{-n_{--}}{x_{---}}$	Electronic gear selection When this digit is changed, the home position will be changed. Execute the home position return again. 0: Electronic gear ([Pr. PA06] and [Pr. PA07]) 1: Not used for positioning mode. Setting this will trigger [AL. 37 Parameter error]. 2: J3 electronic gear setting value compatibility mode (Electronic gear ([Pr. PA06] and [Pr. PA07] $\times 16$)) The electronic gear setting value can be used set with MR-J3. 3: J2S electronic gear setting value compatibility mode (Electronic gear ([Pr. PA06] and [Pr. PA07] $\times 32$)) The electronic gear setting value can be used set with MR-J2S. For MR-J4-03A6-RJ servo amplifiers, "2" and "3" cannot be selected for this digit.	Oh	\bigcirc	\bigcirc	

No.l symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				0 0 m 0 0	Ј	ロ
PA23 DRAT Drive recorder arbitrary alarm trigger setting	--xx	Alarm detail No. setting Set the digits when you execute the trigger with arbitrary alarm detail No. for the drive recorder function. When these digits are " 00 ", only the arbitrary alarm No. setting will be enabled.	00h	\bigcirc	O	\bigcirc
	$\mathrm{xx}_{\text {_ }}$	Alarm No. setting Set the digits when you execute the trigger with arbitrary alarm No. for the drive recorder function. When " 00 " are set, arbitrary alarm trigger of the drive recorder will be disabled.	00h	O	0	\bigcirc
	Setting example: To activate the drive recorder when [AL. 50 Overload 1] occurs, set "5000". To activate the drive recorder when [AL. 50.3 Thermal overload error 4 during operation] occurs, set "5003".					
PA24 AOP4 Function selection A-4	$--^{x}$ Vibration suppression mode selection $0: ~ S t a n d a r d ~ m o d e ~$ 1:3 inertia mode $2:$ Low response mode When you select the standard mode or low response mode, "Vibration suppression control 2" is not available. When you select the 3 inertia mode, the feed forward gain is not available. 		Oh	O	O	O
	-	For manufacturer setting	Oh			
	- ${ }^{\text {x }}$		Oh			
	$\mathrm{x}_{\text {_-_ }}$		Oh			
PA25 OTHOV One-touch tuning Overshoot permissible level		Set a permissible value of overshoot amount for one-touch tuning as a percentage of the in-position range. However, setting "0" will be 50%.	$\begin{gathered} 0 \\ {[\%]} \end{gathered}$	\bigcirc	0	\bigcirc
PA26 *AOP5 Function selection A-5	---x	Torque limit function selection at instantaneous power failure (instantaneous power failure tough drive selection) 0 : Disabled 1: Enabled When an instantaneous power failure occurs during operation, you can save electric energy charged in the capacitor in the servo amplifier by limiting torque at acceleration. You can also delay the time until [AL. 10.2 Voltage drop in the main circuit power] occurs with instantaneous power failure tough drive function. Doing this will enable you to set a longer time in [Pr. PF25 SEMI-F47 function - Instantaneous power failure detection time]. The torque limit function at instantaneous power failure is enabled when "SEMI-F47 function selection" in [Pr. PA20] is "Enabled (_ 1 _ _)". For MR-J4-03A6-RJ servo amplifiers, this digit cannot be used other than the initial value.	Oh	O	0	\bigcirc
	-_ ${ }^{\text {_ }}$	For manufacturer setting	Oh			
	x		Oh			
	$\mathrm{x}_{\text {- }}$		Oh			

7.2.2 Gain/filter setting parameters ([Pr. PB__])

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O 0 0 0 0	Ј	¢
PB01 FILT Adaptive tuning mode (adaptive filter II)	$--^{x}$	Filter tuning mode selection Set the adaptive filter tuning. Select the adjustment mode of the machine resonance suppression filter 1. For details, refer to section 7.1.2 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". 0 : Disabled 1: Automatic setting 2: Manual setting	Oh	\bigcirc	\bigcirc	\bigcirc
	-- ${ }^{\text {x }}$	For manufacturer setting	Oh			
	x		Oh			
	$\mathrm{x}_{\text {_ }}$ -		Oh			
PB02 VRFT Vibration suppression control tuning mode (advanced vibration suppression control II)	---x	Vibration suppression control 1 tuning mode selection Select the tuning mode of the vibration suppression control 1. For details, refer to section 7.1.5 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". : Disabled 1: Automatic setting 2: Manual setting	Oh	\bigcirc	\bigcirc	\bigcirc
	$-_{-}{ }^{\text {- }}$	Vibration suppression control 2 tuning mode selection Select the tuning mode of the vibration suppression control 2. To enable the digit, select "3 inertia mode (_ _ 1)" of "Vibration suppression mode selection" in [Pr. PA24]. For details, refer to section 7.1 .5 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". 0: Disabled 1: Automatic setting 2: Manual setting	Oh	\bigcirc	\bigcirc	\bigcirc
	- ${ }^{\text {c }}$	For manufacturer setting	Oh			
	$\mathrm{x}_{\text {_- }}$		Oh			
PB03 PST Position command acceleration/d eceleration time constant (position smoothing)		This is used to set the constant of a primary delay to the position command. You can select a control method from "Primary delay" or "Linear acceleration/deceleration" in [Pr. PB25 Function selection B-1]. The setting range of "Linear acceleration/deceleration" is 0 ms to 10 ms . Setting of longer than 10 ms will be recognized as 10 ms . (Example) When a command is given from a synchronizing encoder, synchronous operation will start smoothly even if it starts during line operation. Setting range: 0 to 65535	$\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O ¢ 0 0 0	Ј	の
PB09 VG2 Speed loop gain		This is used to set the gain of the speed loop. Set this parameter when vibration occurs on machines of low rigidity or large backlash. Increasing the setting value will also increase the response level but will be liable to generate vibration and/or noise. The setting of the parameter will be the automatic setting or manual setting depending on the [Pr. PA08] setting. Refer to the table of [Pr. PB08] for details. Setting range: 20 to 65535	$\begin{gathered} 823 \\ {[\mathrm{rad} / \mathrm{s}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PB10 VIC Speed integral compensation		Set the integral time constant of the speed loop. Decreasing the setting value will increase the response level but will be liable to generate vibration and/or noise. The setting of the parameter will be the automatic setting or manual setting depending on the [Pr. PA08] setting. Refer to the table of [Pr. PB08] for details. Setting range: 0.1 to 1000.0	$\begin{aligned} & \hline 33.7 \\ & {[\mathrm{~ms}]} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc
PB11 VDC Speed differential compensation		Set the differential compensation. To enable the setting value, turn on PC (proportional control). Setting range: 0 to 1000	980	\bigcirc	\bigcirc	\bigcirc
PB12 OVA Overshoot amount compensation		Set a percentage of viscous friction torque against the servo motor rated value or thrust against the linear servo motor rated value. When the response level is low or when the torque/thrust is limited, the efficiency of the parameter may be lower. Setting range: 0 to 100	$\begin{gathered} 0 \\ {[\%]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PB13 NH1 Machine resonance suppression filter 1		Machine resonance suppression filter 1 Set the notch frequency of the machine resonance suppression filter 1. When "Automatic setting (_ _ 1)" of "Filter tuning mode selection" is selected in [Pr. PB01], this parameter will be adjusted automatically. When you select "Manual setting (\qquad 2)" of "Filter tuning mode selection" in [Pr. PB01], the setting value will be enabled. Setting range: 10 to 4500	$\begin{aligned} & 4500 \\ & {[\mathrm{~Hz}]} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc
PB14 NHQ1 Notch shape selection 1	Set forms of the machine resonance suppression filter 1. When "Automatic setting $\left(__{~}\right.$ 1)" of "Filter tuning mode selection" is selected in [Pr. PB01], this para adjusted automatically. Set manually for the manual setting.					
	---x	For manufacturer setting	Oh			
	$-{ }^{x_{-}}$	Notch depth selection $\begin{aligned} & 0:-40 \mathrm{~dB} \\ & 1:-14 \mathrm{~dB} \\ & 2:-8 \mathrm{~dB} \\ & 3:-4 \mathrm{~dB} \end{aligned}$	Oh	\bigcirc	\bigcirc	\bigcirc
	- ${ }^{\text {- }}$	Notch width selection $\begin{aligned} & 0: \alpha=2 \\ & 1: \alpha=3 \\ & 2: \alpha=4 \\ & 3: \alpha=5 \end{aligned}$	Oh	\bigcirc	\bigcirc	\bigcirc
	$\mathrm{X}_{\text {_- }}$	For manufacturer setting	Oh			
PB15 NH 2 Machine resonance suppression filter 2		Set the notch frequency of the machine resonance suppression filter 2. To enable the setting value, select "Enabled (\qquad 1)" of "Machine resonance suppression filter 2 selection" in [Pr. PB16]. Setting range: 10 to 4500	$\begin{gathered} 4500 \\ {[\mathrm{~Hz}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc

		Function		Initial value [unit]	Control mode			
No.l symbol/name	Setting digit			等	U	ロ		
PB18 LPF Low-pass filter setting		Set the low-pass filter. The following shows a relation of a required parameter to this parameter. Setting range: 100 to 18000			$\begin{gathered} \hline 3141 \\ {[\mathrm{rad} / \mathrm{s}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
	[Pr. PB23] [Pr. PB18] -0_{-}(Initial value) Automatic setting $--^{1}-$ Setting value enabled $--^{2} _$ Setting value disabled							
PB19 VRF11 Vibration suppression control 1 Vibration frequency		Set the vibration frequency for vibration suppression control 1 to suppress low-frequency machine vibration. When "Vibration suppression control 1 tuning mode selection" is "Automatic setting (__ 1)" in [Pr. PB02], this parameter will be set automatically. Set manually for "Manual setting (\qquad 2)". For details, refer to section 7.1 .5 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". Setting range: 0.1 to 300.0		$\begin{gathered} 100.0 \\ {[\mathrm{~Hz}]} \end{gathered}$	0	O	\bigcirc	
PB20 VRF12 Vibration suppression control 1 Resonance frequency		Set the resonance frequency for vibration suppression control 1 to suppress low-frequency machine vibration. When "Vibration suppression control 1 tuning mode selection" is "Automatic setting (__ 1)" in [Pr. PB02], this parameter will be set automatically. Set manually for "Manual setting (__ 2)". For details, refer to section 7.1.5 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". Setting range: 0.1 to 300.0		$\begin{gathered} 100.0 \\ {[\mathrm{~Hz}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	
PB21 VRF13 Vibration suppression control 1 Vibration frequency damping		Set a damping of the vibration frequency for vibration suppression control 1 to suppress low-frequency machine vibration. When "Vibration suppression control 1 tuning mode selection" is "Automatic setting (__ 1)" in [Pr. PB02], this parameter will be set automatically. Set manually for "Manual setting (__ 2)". For details, refer to section 7.1.5 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". Setting range: 0.00 to 0.30		0.00	\bigcirc	\bigcirc	\bigcirc	
PB22 VRF14 Vibration suppression control 1 Resonance frequency damping		Set a damping of the resonance frequency for vibration suppression control 1 to suppress low-frequency machine vibration. When "Vibration suppression control 1 tuning mode selection" is "Automatic setting (__ 1)" in [Pr. PB02], this parameter will be set automatically. Set manually for "Manual setting (\qquad 2)". For details, refer to section 7.1 .5 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". Setting range: 0.00 to 0.30		0.00	0	\bigcirc	\bigcirc	
PB23 VFBF Low-pass filter selection	-_-x	Shaft resonance suppression filter selection Select the shaft resonance suppression filter. 0 : Automatic setting 1: Manual setting 2: Disabled When you select "Enabled (\qquad 1)" of "Machine resonance suppression filter 4 selection" in [Pr. PB49], the shaft resonance suppression filter is not available.		Oh	\bigcirc	\bigcirc	\bigcirc	
	- ${ }^{\text { }}$	Low-pass filter selection Select the low-pass filter. 0 : Automatic setting 1: Manual setting 2: Disabled		Oh	\bigcirc	\bigcirc	\bigcirc	
	x	For manufacturer setting		Oh				
	$\mathrm{x}_{\text {_- }}$			Oh				

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O 0 0 0 0	ひ	か
PB24 *MVS Slight vibration suppression control	- - ${ }^{x}$	Slight vibration suppression control selection Select the slight vibration suppression control. 0: Disabled 1: Enabled To enable the slight vibration suppression control, select "Manual mode (\quad _ _ 3) " of "Gain adjustment mode selection" in [Pr. PA08].	Oh	\bigcirc	\bigcirc	\bigcirc
	$-{ }^{x}$	For manufacturer setting	Oh			
	- x^{\prime}		Oh			
	$x_{\text {- }}{ }^{\text {a }}$		Oh			
PB25 *BOP1 Function selection B-1	- -x	For manufacturer setting	Oh			
	$-^{\mathrm{X}}$ -	Position acceleration/deceleration filter type selection Select the position acceleration/deceleration filter type. 0 : Primary delay 1: Linear acceleration/deceleration	Oh	\bigcirc	\bigcirc	\bigcirc
	- ${ }_{\text {_ }}$	For manufacturer setting	Oh			
	x		Oh			
PB26 *CDP Gain switching function	Select the gain switching condition. Set conditions to enable the gain switching values set in [Pr. PB29] to [Pr. PB36] and [Pr. PB56] to [Pr. PB60].					
	-- - x	Gain switching selection 0 : Disabled 1: Input device (gain switching (CDP)) 2: Command frequency (Note) 3: Droop pulses 4: Servo motor speed/linear servo motor speed Note. This will be a frequency of the servo motor side (load side for the fully closed loop control) command pulse unit.	Oh	\bigcirc	\bigcirc	\bigcirc
	$-_{-}{ }^{\text {x }}$	Gain switching condition selection 0 : Gain after switching is enabled with gain switching condition or more 1: Gain after switching is enabled with gain switching condition or less	Oh	\bigcirc	\bigcirc	\bigcirc
	x	For manufacturer setting	Oh			
	x^{\prime},		Oh			
PB27 CDL Gain switching condition		This is used to set the value of gain switching (command frequency, droop pulses, and servo motor speed/linear servo motor speed) selected in [Pr. PB26]. The set value unit differs depending on the switching condition item. (Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" section 7.2.3.) The unit "r/min" will be " mm / s " for linear servo motors. Setting range: 0 to 9999	10 [kpulse/s]/ [pulse]/ [r/min]	\bigcirc	\bigcirc	\bigcirc
PB28 CDT Gain switching time constant		Set the time constant at which the gains will change in response to the conditions set in [Pr. PB26] and [Pr. PB27]. Setting range: 0 to 100	$\begin{gathered} 1 \\ {[\mathrm{~ms}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PB29 GD2B Load to motor inertia ratio/load to motor mass ratio after gain switching		Set the load to motor inertia ratio/load to motor mass ratio for when gain switching is enabled. This parameter is enabled only when you select "Manual mode (_ _ _ 3)" of "Gain adjustment mode selection" in [Pr. PA08]. Setting range: 0.00 to 300.00	7.00 [Multipli er]	\bigcirc	\bigcirc	\bigcirc
PB30 PG2B Position loop gain after gain switching		Set the position loop gain for when the gain switching is enabled. When you set a value less than $1.0 \mathrm{rad} / \mathrm{s}$, the value will be the same as [Pr. PB08]. This parameter is enabled only when you select "Manual mode (\qquad 3)" of "Gain adjustment mode selection" in [Pr. PA08]. Setting range: 0.0 to 2000.0	$\begin{gathered} 0.0 \\ {[\mathrm{rad} / \mathrm{s}]} \end{gathered}$	\bigcirc	\rangle	\bigcirc

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O ¢ ¢ 0	J	の
PB31 VG2B Speed loop gain after gain switching		Set the speed loop gain for when the gain switching is enabled. When you set a value less than $20 \mathrm{rad} / \mathrm{s}$, the value will be the same as [Pr. PB09]. This parameter is enabled only when you select "Manual mode (\qquad 3)" of "Gain adjustment mode selection" in [Pr. PA08]. Setting range: 0 to 65535	$\begin{gathered} 0 \\ {[\mathrm{rad} / \mathrm{s}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PB32 VICB Speed integral compensation after gain switching		Set the speed integral compensation for when the gain switching is enabled. When you set a value less than 0.1 ms , the value will be the same as [Pr. PB10]. This parameter is enabled only when you select "Manual mode (\qquad 3)" of "Gain adjustment mode selection" in [Pr. PA08]. Setting range: 0.0 to 5000.0	$\begin{gathered} \hline 0.0 \\ {[\mathrm{~ms}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PB33 VRF1B Vibration suppression control 1 Vibration frequency after gain switching		Set the vibration frequency for vibration suppression control 1 for when the gain switching is enabled. When you set a value less than 0.1 Hz , the value will be the same as [Pr. PB19]. This parameter will be enabled only when the following conditions are fulfilled. - "Gain adjustment mode selection" in [Pr. PA08] is "Manual mode (___3)". - "Vibration suppression control 1 tuning mode selection" in [Pr. PB02] is "Manual setting (\qquad 2)". - "Gain switching selection" in [Pr. PB26] is "Input device (gain switching (CDP)) (_ _ _ 1)". Switching during driving may cause a shock. Be sure to switch them after the servo motor or linear servo motor stops. Setting range: 0.0 to 300.0	$\begin{gathered} \hline 0.0 \\ {[\mathrm{~Hz}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PB34 VRF2B Vibration suppression control 1 - Resonance frequency after gain switching		Set the resonance frequency for vibration suppression control 1 for when the gain switching is enabled. When you set a value less than 0.1 Hz , the value will be the same as [Pr. PB20]. This parameter will be enabled only when the following conditions are fulfilled. - "Gain adjustment mode selection" in [Pr. PA08] is "Manual mode (___3)". - "Vibration suppression control 1 tuning mode selection" in [Pr. PB02] is "Manual setting (\qquad 2)". - "Gain switching selection" in [Pr. PB26] is "Input device (gain switching (CDP)) (_ _ _ 1)". Switching during driving may cause a shock. Be sure to switch them after the servo motor or linear servo motor stops. Setting range: 0.0 to 300.0	$\begin{gathered} \hline 0.0 \\ {[\mathrm{~Hz}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PB35 VRF3B Vibration suppression control 1 Vibration frequency damping after gain switching		Set a damping of the vibration frequency for vibration suppression control 1 when the gain switching is enabled. This parameter will be enabled only when the following conditions are fulfilled. - "Gain adjustment mode selection" in [Pr. PA08] is "Manual mode (___3)". - "Vibration suppression control 1 tuning mode selection" in [Pr. PB02] is "Manual setting (_-_ 2)". - "Gain switching selection" in [Pr. PB26] is "Input device (gain switching (CDP)) (_ _ _ 1)". Switching during driving may cause a shock. Be sure to switch them after the servo motor or linear servo motor stops. Setting range: 0.00 to 0.30	0.00	\bigcirc	\bigcirc	\bigcirc

7. PARAMETERS

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				0 0 ¢ O	Ј	๓
PB36 VRF4B Vibration suppression control 1 Resonance frequency damping after gain switching		Set a damping of the resonance frequency for vibration suppression control 1 when the gain switching is enabled. This parameter will be enabled only when the following conditions are fulfilled. - "Gain adjustment mode selection" in [Pr. PA08] is "Manual mode (_ _ _ 3)". - "Vibration suppression control 1 tuning mode selection" in [Pr. PB02] is "Manual setting (\qquad 2)". - "Gain switching selection" in [Pr. PB26] is "Input device (gain switching (CDP)) (_ _ -1)". Switching during driving may cause a shock. Be sure to switch them after the servo motor or linear servo motor stops. Setting range: 0.00 to 0.30	0.00	\bigcirc	\bigcirc	\bigcirc

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O O m 0	U	¢
PB45 CNHF Command notch filter	Set the command notch filter.					
	-_xx	Command notch filter setting frequency selection Refer to table 7.6 for the relation of setting values to frequency.	00h	\bigcirc	\bigcirc	\bigcirc
	_ ${ }^{\text {_ _ }}$	Notch depth selection Refer to table 7.7 for details.	Oh	\bigcirc	0	\bigcirc
	X_--	For manufacturer setting	Oh	,		-

Table 7.6 Command notch filter setting frequency selection

Setting value	Frequency [Hz]	Setting value	Frequency [Hz]	Setting value	Frequency [Hz]
-00	Disabled	- 20	70	-_40	17.6
--01	2250	--21	66	--41	16.5
--02	1125	--22	62	--42	15.6
--03	750	- 23	59	--43	14.8
-_04	562	- 24	56	-_44	14.1
--05	450	- 25	53	--45	13.4
--06	375	--26	51	--46	12.8
--07	321	- $\quad 27$	48	-_47	12.2
--08	281	--28	46	--48	11.7
-_09	250	- 29	45	--49	11.3
_-0 A	225	_-2 A	43	_-4A	10.8
- 0 B	204	- 2 B	41	- 4 4	10.4
- - 0 C	187	-_2C	40	-_4C	10
- 0 D	173	_-2 D	38	_-4D	9.7
- 0 E	160	- 2 E	37	- $4 \mathrm{4E}$	9.4
-_0F	150	-_2F	36	- ${ }^{4 \mathrm{~F}}$	9.1
--10	140	--30	35.2	--50	8.8
- 11	132	--31	33.1	--51	8.3
--12	125	--32	31.3	-_52	7.8
--13	118	- - 33	29.6	-- 53	7.4
- $\quad 14$	112	--34	28.1	--54	7.0
--15	107	--35	26.8	-_55	6.7
--16	102	--36	25.6	-_56	6.4
--17	97	--37	24.5	--57	6.1
--18	93	--38	23.4	--58	5.9
--19	90	-_39	22.5	_-59	5.6
- 1 1	86	_-3A	21.6	_-5 A	5.4
--1 1 d	83	- 3 B	20.8	- 5 B	5.2
- 1 C	80	_-3C	20.1	-_5C	5.0
- -1 D	77	_-3D	19.4	-_5 D	4.9
--1E	75	_-3E	18.8	_-5E	4.7
-_1F	72	_- 3 F	18.2	_- 5 F	4.5

Table 7.7 Notch depth selection

Setting value	Depth [dB]
$-0 _-$	-40.0
$-1--$	-24.1
$-2--$	-18.1
$-3--$	-14.5
$-4--$	-12.0
$-5--$	-10.1
$-6--$	-8.5
$-7 _-$	-7.2

Setting value	Depth [dB]
-8_-	-6.0
-9_-	-5.0
${ }_{-} \mathrm{A}_{--}$	-4.1
B_{2}	-3.3
${ }_{-} \mathrm{C}_{-}$	-2.5
D-	-1.8
- E_-	-1.2
${ }_{-} \mathrm{F}_{--}$	-0.6

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				$\begin{array}{\|l} \hline 0 \\ 0 \\ \frac{9}{0} \\ \hline 0 \end{array}$	む	¢
PB46 NH3 Machine resonance suppression filter 3		Set the notch frequency of the machine resonance suppression filter 3. To enable the setting value, select "Enabled (_ _ 1)" of "Machine resonance suppression filter 3 selection" in [Pr. PB47]. Setting range: 10 to 4500	$\begin{aligned} & \hline 4500 \\ & {[\mathrm{~Hz}]} \end{aligned}$	\bigcirc	O	\bigcirc
PB47 NHQ3 Notch shape selection 3	Set forms of the machine resonance suppression filter 3.					
	--_x	Machine resonance suppression filter 3 selection 0: Disabled 1: Enabled	Oh	\bigcirc	O	\bigcirc
	-- ${ }^{\text {x }}$	Notch depth selection $\begin{aligned} & \text { 0: }-40 \mathrm{~dB} \\ & \text { 1: }-14 \mathrm{~dB} \\ & \text { 2: }-8 \mathrm{~dB} \\ & \text { 3: }-4 \mathrm{~dB} \end{aligned}$	Oh	\bigcirc	O	O
	- ${ }^{\text {x }}$ -	Notch width selection $\begin{aligned} & \text { 0: } \alpha=2 \\ & \text { 1: } \alpha=3 \\ & \text { 2: } \alpha=4 \\ & 3: \alpha=5 \end{aligned}$	Oh	\bigcirc	0	\bigcirc
	x_--	For manufacturer setting	Oh	-		
PB48 NH4 Machine resonance suppression filter 4		Set the notch frequency of the machine resonance suppression filter 4. To enable the setting value, select "Enabled \qquad 1)" of "Machine resonance suppression filter 4 selection" in [Pr. PB49]. Setting range: 10 to 4500	$\begin{gathered} \hline 4500 \\ {[\mathrm{~Hz}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PB49 NHQ4 Notch shape selection 4	Set forms of the machine resonance suppression filter 4.					
	---x	Machine resonance suppression filter 4 selection 0: Disabled 1: Enabled When you select "Enabled" of this digit, [Pr. PB17 Shaft resonance suppression filter] is not available.	Oh	\bigcirc	O	\bigcirc
	--x_	Notch depth selection $0:-40 \mathrm{~dB}$ $1:-14 \mathrm{~dB}$ $2:-8 \mathrm{~dB}$ $3:-4 \mathrm{~dB}$	Oh	\bigcirc	0	\bigcirc
	- ${ }^{\text {- }}$	Notch width selection $0: \alpha=2$ 1: $\alpha=3$ 2: $\alpha=4$ 3: $\alpha=5$	Oh	\bigcirc	0	\bigcirc
	X_--	For manufacturer setting	Oh	,		
PB50 NH5 Machine resonance suppression filter 5		Set the notch frequency of the machine resonance suppression filter 5 . To enable the setting value, select "Enabled \qquad 1)" of "Machine resonance suppression filter 5 selection" in [Pr. PB51]. Setting range: 10 to 4500	$\begin{aligned} & \hline 4500 \\ & {[\mathrm{~Hz}]} \end{aligned}$	\bigcirc	O	\bigcirc

No. $/$ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O	-	の
PB51 NHQ5 Notch shape selection 5	Set forms of the machine resonance suppression filter 5. When you select "Enabled (_ _ 1)" of "Robust filter selection" in [Pr. PE41], the machine resonance suppression filter 5 is not available.					
	---x	Machine resonance suppression filter 5 selection 0: Disabled 1: Enabled	Oh	\bigcirc	\bigcirc	\bigcirc
	-- ${ }^{\text {x }}$	Notch depth selection 0: -40 dB 1: -14 dB 2: -8 dB 3: -4 dB	Oh	\bigcirc	\bigcirc	\bigcirc
	${ }_{-}{ }^{\text {_ }}$	Notch width selection $\begin{aligned} & 0: \alpha=2 \\ & 1: \alpha=3 \\ & 2: \alpha=4 \\ & 3: \alpha=5 \end{aligned}$	Oh	\bigcirc	\bigcirc	\bigcirc
	$\mathrm{X}_{\text {_ }}$	For manufacturer setting	Oh			
PB52 VRF21 Vibration suppression control 2 Vibration frequency		Set the vibration frequency for vibration suppression control 2 to suppress low-frequency machine vibration. When "Vibration suppression control 2 tuning mode selection" is "Automatic setting (_ _ 1 _)" in [Pr. PB02], this parameter will be set automatically. Set manually for "Manual setting (_ _ 2 _)". To enable the digit, select " 3 inertia mode (\qquad 1)" of "Vibration suppression mode selection" in [Pr. PA24]. Setting range: 0.1 to 300.0	$\begin{gathered} 100.0 \\ {[\mathrm{~Hz}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PB53 VRF22 Vibration suppression control 2 Resonance frequency		Set the resonance frequency for vibration suppression control 2 to suppress low-frequency machine vibration. When "Vibration suppression control 2 tuning mode selection" is "Automatic setting (_ 1 _)" in [Pr. PB02], this parameter will be set automatically. Set manually for "Manual setting (_ _ 2 _)". To enable the digit, select "3 inertia mode ($_$_ 1)" of "Vibration suppression mode selection" in [Pr. PA24]. Setting range: 0.1 to 300.0	$\begin{gathered} 100.0 \\ {[\mathrm{~Hz}]} \end{gathered}$	\bigcirc	\bigcirc	O
PB54 VRF23 Vibration suppression control 2 Vibration frequency damping		Set a damping of the vibration frequency for vibration suppression control 2 to suppress low-frequency machine vibration. When "Vibration suppression control 2 tuning mode selection" is "Automatic setting (_ 1 _)" in [Pr. PB02], this parameter will be set automatically. Set manually for "Manual setting (_ _ 2 _)". To enable the digit, select " 3 inertia mode (\qquad 1)" of "Vibration suppression mode selection" in [Pr. PA24]. Setting range: 0.00 to 0.30	0.00	\bigcirc	\bigcirc	\bigcirc
PB55 VRF24 Vibration suppression control 2 Resonance frequency damping		Set a damping of the resonance frequency for vibration suppression control 2 to suppress low-frequency machine vibration. When "Vibration suppression control 2 tuning mode selection" is "Automatic setting (_ 1 _)" in [Pr. PB02], this parameter will be set automatically. Set manually for "Manual setting (_ _ 2 _)". To enable the digit, select " 3 inertia mode (\qquad 1)" of "Vibration suppression mode selection" in [Pr. PA24]. Setting range: 0.00 to 0.30	0.00	\bigcirc	\bigcirc	\bigcirc

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O	Ј	の
PB56 VRF21B Vibration suppression control 2 Vibration frequency after gain switching		Set the vibration frequency for vibration suppression control 2 for when the gain switching is enabled. When you set a value less than 0.1 Hz , the value will be the same as [Pr. PB52]. This parameter will be enabled only when the following conditions are fulfilled. - "Gain adjustment mode selection" in [Pr. PA08] is "Manual mode (\qquad 3)". - "Vibration suppression mode selection" in [Pr. PA24] is "3 inertia mode (\qquad 1)". - "Vibration suppression control 2 tuning mode selection" in [Pr. PB02] is "Manual setting (_ _ 2 _)". - "Gain switching selection" in [Pr. PB26] is "Input device (gain switching (CDP)) (_ _ _ 1)". Switching during driving may cause a shock. Be sure to switch them after the servo motor or linear servo motor stops. Setting range: 0.0 to 300.0	$\begin{gathered} \hline 0.0 \\ {[\mathrm{~Hz}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PB57 VRF22B Vibration suppression control 2 - Resonance frequency after gain switching		Set the resonance frequency for vibration suppression control 2 for when the gain switching is enabled. When you set a value less than 0.1 Hz , the value will be the same as [Pr. PB53]. This parameter will be enabled only when the following conditions are fulfilled. - "Gain adjustment mode selection" in [Pr. PA08] is "Manual mode (\qquad 3)". - "Vibration suppression mode selection" in [Pr. PA24] is "3 inertia mode (\qquad 1)". - "Vibration suppression control 2 tuning mode selection" in [Pr. PB02] is "Manual setting (_ _ 2 _)". - "Gain switching selection" in [Pr. PB26] is "Input device (gain switching (CDP)) (_ _ _ 1)". Switching during driving may cause a shock. Be sure to switch them after the servo motor or linear servo motor stops. Setting range: 0.0 to 300.0	$\begin{gathered} \hline 0.0 \\ {[\mathrm{~Hz}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PB58 VRF23B Vibration suppression control 2 Vibration frequency damping after gain switching		Set a damping of the vibration frequency for vibration suppression control 2 when the gain switching is enabled. This parameter will be enabled only when the following conditions are fulfilled. - "Gain adjustment mode selection" in [Pr. PA08] is "Manual mode (\qquad 3)". - "Vibration suppression mode selection" in [Pr. PA24] is "3 inertia mode (\qquad 1)". - "Vibration suppression control 2 tuning mode selection" in [Pr. PB02] is "Manual setting (_ _ 2 _)". - "Gain switching selection" in [Pr. PB26] is "Input device (gain switching (CDP)) (_ _ _ 1)". Switching during driving may cause a shock. Be sure to switch them after the servo motor or linear servo motor stops. Setting range: 0.00 to 0.30	0.00	\bigcirc	\bigcirc	\bigcirc
PB59 VRF24B Vibration suppression control 2 - Resonance frequency damping after gain switching		Set a damping of the resonance frequency for vibration suppression control 2 when the gain switching is enabled. This parameter will be enabled only when the following conditions are fulfilled. - "Gain adjustment mode selection" in [Pr. PA08] is "Manual mode (\qquad 3)". - "Vibration suppression mode selection" in [Pr. PA24] is "3 inertia mode (\qquad 1)". - "Vibration suppression control 2 tuning mode selection" in [Pr. PB02] is "Manual setting (_ _ 2 _)". - "Gain switching selection" in [Pr. PB26] is "Input device (gain switching (CDP)) (_ _ _ 1)". Switching during driving may cause a shock. Be sure to switch them after the servo motor or linear servo motor stops. Setting range: 0.00 to 0.30	0.00	\bigcirc	\bigcirc	\bigcirc

No．l symbol／name	Setting digit	Function	Initial value ［unit］	Control mode		
				足	Ј	の
$\begin{array}{\|l\|} \hline \text { PB60 } \\ \text { PG1B } \\ \text { Model loop } \\ \text { gain after gain } \\ \text { switching } \end{array}$		Set the model loop gain for when the gain switching is enabled． When you set a value less than $1.0 \mathrm{rad} / \mathrm{s}$ ，the value will be the same as［Pr．PB07］． This parameter will be enabled only when the following conditions are fulfilled． －＂Gain adjustment mode selection＂in［Pr．PA08］is＂Manual mode（＿＿3）＂． －＂Gain switching selection＂in［Pr．PB26］is＂Input device（gain switching（CDP））（＿＿ ＿1）＂． Switching during driving may cause a shock．Be sure to switch them after the servo motor or linear servo motor stops． Setting range： 0.0 to 2000.0	$\begin{gathered} 0.0 \\ {[\mathrm{rad} / \mathrm{s}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc

7．2．3 Extension setting parameters（［Pr．PC＿＿］）

No．／ symbol／name	Setting digit	Function	Initial value ［unit］	Control mode		
				O ¢ ¢ 0	U	の
$\begin{array}{\|l\|} \hline \text { PC01 } \\ \text { STA } \\ \text { JOG } \\ \text { operation } \\ \text { acceleration } \\ \text { time constant } \end{array}$		Set an acceleration time constant for the JOG operation of the program method． Set an acceleration time from $0 \mathrm{r} / \mathrm{min}$ or $0 \mathrm{~mm} / \mathrm{s}$ to the rated speed． For example for the servo motor of $3000 \mathrm{r} / \mathrm{min}$ rated speed，set $3000(3 \mathrm{~s})$ to increase speed from $0 \mathrm{r} / \mathrm{min}$ to $1000 \mathrm{r} / \mathrm{min}$ in 1 s ． Additionally，when 20000 ms or more value is set，it will be clamped to 20000 ms ． Setting range： 0 to 50000	$\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$		\bigcirc	
PC01 STA Acceleration time constant 1		Set an acceleration time constant for the automatic operation of the indexer method． Set an acceleration time from $0 \mathrm{r} / \mathrm{min}$ to the rated speed． If the preset speed command is lower than the rated speed， For example for the servo motor of $3000 \mathrm{r} / \mathrm{min}$ rated speed，set $3000(3 \mathrm{~s})$ to increase speed from $0 \mathrm{r} / \mathrm{min}$ to $1000 \mathrm{r} / \mathrm{min}$ in 1 s ． Additionally，when 20000 ms or more value is set，it will be clamped to 20000 ms ．	$\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$			\bigcirc
$\begin{array}{\|l} \hline \text { PC02 } \\ \text { STB } \\ \text { JOG } \\ \text { operation } \\ \text { deceleration } \\ \text { time constant } \end{array}$		Set a deceleration time constant for the JOG operation of the program method． Set a deceleration time from the rated speed to $0 \mathrm{r} / \mathrm{min}$ or $0 \mathrm{~mm} / \mathrm{s}$ ． Additionally，when 20000 ms or more value is set，it will be clamped to 20000 ms ． Setting range： 0 to 50000	$\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$	\rangle	\bigcirc	

7. PARAMETERS

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O 0 0 0 0	U	ロ
PC02 STB Deceleration time constant 1		Set a deceleration time constant for the automatic operation of the indexer method. Set a deceleration time from the rated speed to $0 \mathrm{r} / \mathrm{min}$. Additionally, when 20000 ms or more value is set, it will be clamped to 20000 ms . Setting range: 0 to 50000	$\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$			\bigcirc
PC03 *STC S-pattern acceleration/ deceleration time constant		This enables to start/stop the servo motor or linear servo motor smoothly. Set the time of the arc part for S-pattern acceleration/deceleration. Servo is usually operated with linear acceleration and deceleration; however, smooth start and stop are enabled by setting [Pr. PC03 S-pattern acceleration/deceleration time constants]. When the S-pattern acceleration/deceleration time constants are set, smooth positioning is enabled as shown in the following figure. Note that when it is set, a time period from the start to output of MEND (Travel completion) is longer by the S-pattern acceleration/deceleration time constants. Ta: Time until preset speed is reached Tb: Time until stop When the STC value is set longer than the constant speed time, the speed may not reach to the command speed. Additionally, when a value of 1000 ms or more is set, it will be clamped to 1000 ms . Setting range: 0 to 5000	$\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$	\bigcirc	\bigcirc	
PC05 SC1 Automatic operation speed 1		Set a positioning speed for the automatic operation speed 1, 2 of the indexer method. Setting range: 0 to permissible instantaneous speed	$\begin{gathered} 100 \\ {[\mathrm{r} / \mathrm{min}]} \end{gathered}$	∇	\checkmark	\bigcirc
PC06 SC2 Automatic operation speed 2		Set a positioning speed for the automatic operation speed 1,2 of the indexer method. Setting range: 0 to permissible instantaneous speed	$\begin{gathered} 500 \\ {[\mathrm{r} / \mathrm{min}]} \end{gathered}$	\checkmark	\checkmark	\bigcirc
PC07 SC3 Manual operation speed 1		Set a JOG speed of the manual operation mode, JOG operation, and home position return mode of the indexer method. Setting range: 0 to permissible instantaneous speed	$\begin{gathered} 1000 \\ {[\mathrm{r} / \mathrm{min}]} \end{gathered}$	\checkmark	\checkmark	\bigcirc

No./ symbol/name	Setting digit	Function						Initial value [unit]	Control mode			
								$\begin{aligned} & \mathrm{O} \\ & \text { M } \\ & \text { M } \\ & \hline 0 \end{aligned}$	Ј	の		
PC14 MOD1 Analog monitor 1 output	- ${ }^{x} \mathrm{x}$	Analog monitor 1 output selection Select a signal to output to MO1 (Analog monitor 1). Refer to appendix 8.3 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" for detection points of output selection. Refer to table 7.8 or 7.9 for settings.							00h	\bigcirc	\bigcirc	\bigcirc
	$\mathrm{x}_{\text {- }}$	For manufacturer setting						Oh				
	X_{-}							Oh				
		_ _ 00	(Linear) servo motor speed ($\pm 8 \mathrm{~V} /$ max. speed)	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
		-_ 01	Torque or thrust ($\pm 8 \mathrm{~V} /$ max. torque or max. thrust) (Note 3)	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
		-_ 02	(Linear) servo motor speed (+8 V/max. speed)	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
		-_03	Torque or thrust ($+8 \mathrm{~V} /$ max. torque or max. thrust) (Note 3)	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
		-_04	Current command ($\pm 8 \mathrm{~V} / \mathrm{max}$. current command)	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
		_-05	Command pulse frequency ($\pm 10 \mathrm{~V} / \pm 4$ Mpulses/s)	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
		- - 06	Servo motor-side droop pulses ($\pm 10 \mathrm{~V} / 100$ pulses) (Note 2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
		-_07	Servo motor-side droop pulses ($\pm 10 \mathrm{~V} / 1000$ pulses) (Note 2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
		_-08	Servo motor-side droop pulses ($\pm 10 \mathrm{~V} / 10000$ pulses) (Note 2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
		-_09	Servo motor-side droop pulses ($\pm 10 \mathrm{~V} / 100000$ pulses) (Note 2)	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
		- 0 A	Feedback position ($\pm 10 \mathrm{~V} / 1$ Mpulses) (Note 2)	\bigcirc	,							
		_-0B	Feedback position ($\pm 10 \mathrm{~V} / 10 \mathrm{Mpulses}$) (Note 2)	\bigcirc								
		_-0C	Feedback position ($\pm 10 \mathrm{~V} / 100$ Mpulses) (Note 2)	\bigcirc	\triangle							
		- - 0 D	Bus voltage (200 V class and 100 V class: $+8 \mathrm{~V} / 400 \mathrm{~V}$, 400 V class: $+8 \mathrm{~V} / 800 \mathrm{~V}$)	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
		_-0E	Speed command 2 ($\pm 8 \mathrm{~V} /$ max. speed)	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
		- $\quad 10$	Load-side droop pulses ($\pm 10 \mathrm{~V} / 100$ pulses) (Note 2)		\bigcirc							
		- - 11	Load-side droop pulses ($\pm 10 \mathrm{~V} / 1000$ pulses) (Note 2)		\bigcirc							
		-_12	Load-side droop pulses ($\pm 10 \mathrm{~V} / 10000$ pulses) (Note 2)		\bigcirc							
		--13	Load-side droop pulses ($\pm 10 \mathrm{~V} / 100000$ pulses) (Note 2)		\bigcirc							
		-_14	Load-side droop pulses ($\pm 10 \mathrm{~V} / 1$ Mpulses) (Note 2)		\bigcirc							
		-_15	Servo motor-side/load-side position deviation ($\pm 10 \mathrm{~V} / 100000$ pulses)		0							
		-_ 16	Servo motor-side/load-side speed deviation ($\pm 8 \mathrm{~V} /$ max. speed)									
		--17	Encoder inside temperature ($\pm 10 \mathrm{~V} / \pm 128^{\circ} \mathrm{C}$)	\bigcirc	\bigcirc		\bigcirc					
		Note 1 2. 3.	Items with \bigcirc are available for each operation mode. Standard: Standard (semi closed loop system) use of the Full.: Fully closed loop system use of the rotary servo mo Lin.: Linear servo motor use DD: Direct drive (DD) motor use Encoder pulse unit The value in [Pr. PA11] or [Pr. PA12] whichever is higher maximum thrust.	rotary or is ap	y se plie	rvo d for	the	axim				

No./ symbol/name	Setting digit	Function			Initial value [unit]	Control mode			
					O ¢ ¢ O	-	の		
PC19 *ENRS Encoder output pulse selection	$--{ }^{x}$	Encoder output puls Select an encoder p 0 : Increasing A-pha 1: Increasing A-pha Setting value 0	e phase selection ulse direction. 90° in CCW or positive dir 90° in CW or negative dire	ction tion ction/linear servo motor rection CW or negative direction A-phase B-phase A-phase \square \square B-phase \square		Oh	\bigcirc	\bigcirc	\bigcirc
	$\sim_{-}{ }^{\text {_ }}$	Encoder output puls 0 : Output pulse sett 1: Division ratio settin 2: The same output 3: A-phase/B-phase 4: A/B-phase pulse 5: Command pulse When you select " 1 " disabled. When you select " 2 " Encoder output puls pulse unit for the ind settings in [Pr. PA06] Setting " 4 " will be en used. And "Encoder another encoder is control mode (_ _ 0 When " 5 " is set, the Encoder output puls x)" and "Encoder se disabled. When [Pr. "Program method (PP/PP2 with [Pr. PD	e setting selection ng ing pulse setting as command pu pulse electronic gear setting through output setting input through output setting , the settings of [Pr. PA16 En , the settings of [Pr. PA15 En es 2] will be disabled. Additio dexer method. When you sele] and [Pr. PA07] after the pow nabled only when A/B/Z-phas output pulse phase selection connected, [AL. 37 Parameter _)" in [Pr. PA01] will trigger [AL settings of [Pr. PA15 Encode es 2] will be disabled. "Encod lection for encoder output pul PA01] is set to other than "P _- 7)", [AL. 37 Parameter e 44] and NP/NP2 with [Pr. PD	lse coder output pulses 2] will be coder output pulses] and [Pr. PA16 nally, it will be the servo motor side the setting, do not change the er-on. differential output linear encoder is (\quad _ _ x)" will be disabled. When error] will occur. Setting "Standard L. 37 Parameter error]. output pulses] and [Pr. PA16 r output pulse phase selection (se (x \qquad)" will be also int table method (___6)" and ror] occurs. When " 5 " is set, assign 46].	Oh	\bigcirc	\bigcirc	\bigcirc	
	- ${ }_{\text {- }}$	Selection of the enc Select an encoder u 0: Servo motor enco 1: Load-side encode When "_ 10 _" is se This is only for the f If " 1 " is set other tha occur.	oders for encoder output puls sed the encoder output pulse der t to this parameter, [AL. 37 P flly closed loop system. n in the fully closed loop syst	which the servo amplifier outputs. arameter error] will occur. , [AL. 37 Parameter error] will	Oh	\bigcirc	\rangle	\bigcirc	
	x_--	For manufacturer se	tting		Oh				
PC20 *SNO Station No. setting		Specify a station No. Always set one stati two or more stations Setting range: 0 to	of the servo amplifier for R on to one axis of the servo am will disable a normal comm 31	-422 and USB communication. lifier. Setting one station number to nication.	$\left\|\begin{array}{c} 0 \\ {[\text { Station }]} \end{array}\right\|$	\bigcirc	\bigcirc	\bigcirc	

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				过	U	の
PC21 *SOP RS-422 communicatio n function selection	Select the details of RS-422 communication function.					
	_-_x	For manufacturer setting	Oh			
	$--^{x}$	RS-422 communication baud rate selection When using the parameter unit, set "1 _ _-" in [Pr. PF34]. 0: 9600 [bps] 1: 19200 [bps] 2: 38400 [bps] 3: 57600 [bps] 4: $115200[\mathrm{bps}]$	Oh	\bigcirc	\bigcirc	\bigcirc
	- ${ }^{\text {- }}$	RS-422 communication response delay time selection 0 : Disabled 1: Enabled (responding after 800μ s or longer delay time)	Oh	\bigcirc	\bigcirc	\bigcirc
	$\mathrm{x}_{\text {- }}$	For manufacturer setting	Oh			
PC22*COP1Functionselection C-1	-_-x	For manufacturer setting	Oh			
	${ }_{--} \mathrm{x}_{-}$		Oh			
	- $x_{\text {- }}$		Oh			
	$\mathrm{x}_{\text {- }--}$	Encoder cable communication method selection Select how to execute the encoder cable communication method. 0: Two-wire type 1: Four-wire type When using an encoder of $A / B / Z$-phase differential output method, set " 0 ". If the setting is incorrect, [AL. 16 Encoder initial communication error 1] or [AL. 20 Encoder normal communication error 1] occurs. For MR-J4-03A6-RJ servo amplifiers, this digit cannot be used other than the initial value. Also, it does not comply with encoders of A/B/Z-phase differential output method.	Oh	\bigcirc	0	\bigcirc
PC24 *COP3 Function selection C-3	---x	In-position range unit selection Select a unit of in-position range. 0 : Command unit 1: Servo motor encoder pulse unit	Oh	\bigcirc	0	\bigcirc
	${ }_{-} \mathrm{x}_{\text {- }}$	For manufacturer setting	Oh	,		
	- ${ }^{\text {x }}$		Oh			
	$\mathrm{x}_{\text {_ - - }}$	```Error excessive alarm level unit selection Select a setting unit of the error excessive alarm level set in [Pr. PC43]. 0: Per 1 rev or 1 mm 1: Per 0.1 rev or 0.1 mm 2: Per 0.01 rev or 0.01 mm 3: Per 0.001 rev or 0.001 mm```	Oh	\bigcirc	0	0
PC26 *COP5 Function selection C-5	$--{ }^{\text {x }}$	[AL. 99 Stroke limit warning] selection Select [AL. 99 Stroke limit warning]. 0 0: Enabled 1: Disabled	Oh	\bigcirc	O	\bigcirc
	-- $\mathrm{x}_{\text {- }}$	For manufacturer setting	Oh	,		
	${ }_{-1} \mathrm{x}_{--}$		Oh			
	$\mathrm{x}_{\text {- }}{ }^{\text {a }}$		Oh			

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode				
				O-	-	の		
PC27 *COP6 Function selection C-6	---x	[AL. 10 Undervoltage] detection method selection Set this parameter when [AL. 10 Undervoltage] occurs due to distorted power supply voltage waveform while using FR-RC-(H) or FR-CV-(H). 0: [AL. 10] not occurrence 1: [AL. 10] occurrence This digit is not available with MR-J4-03A6-RJ servo amplifiers.	Oh	\bigcirc	\bigcirc	\bigcirc		
	-- ${ }^{\text {¢ }}$	Main circuit power supply selection Select a voltage to be connected to the main circuit power supply with an MR-J4-03A6-RJ servo amplifier. 0: 48 V DC 1: 24 V DC When using 24 V DC for the main circuit power supply, set "1" to this digit. This digit is not available with MR-J4-_A_-RJ 100 W or more servo amplifiers. The characteristics of the servo motor vary depending on whether 48 V DC or 24 V DC is used. For details, refer to "Servo Motor Instruction Manual (Vol. 3)".	Oh	\bigcirc	\bigcirc	\bigcirc		
	${ }^{\text {x }}$	Undervoltage alarm selection Select the alarm and warning that occurs when the bus voltage drops to the undervoltage alarm level. 0: [AL. 10] regardless of servo motor speed 1: [AL. E9] at servo motor speed $50 \mathrm{r} / \mathrm{min}(50 \mathrm{~mm} / \mathrm{s})$ or less, [AL. 10] at over $50 \mathrm{r} / \mathrm{min}$ ($50 \mathrm{~mm} / \mathrm{s}$)	Oh	\bigcirc	\bigcirc	\bigcirc		
	X__-	For manufacturer setting	Oh					
PC2	---x	For manufacturer setting	Oh					
*COP7	$-_{-} x_{-}$		Oh					
Function	${ }^{\mathrm{x}}$ -		Oh					
selection C-7		Linear scale multipoint Z-phase input function selection When two or more reference marks exist during the full stroke of the linear encoder, set "1". 0: Disabled 1: Enabled This parameter setting is used by servo amplifiers with software version A5 or later. This digit is not available with MR-J4-03A6-RJ servo amplifiers.	Oh	\bigcirc	\bigcirc	\rangle		
PC30 STA2 Home position return acceleration time constant		This parameter is used when a home position return is executed with the program method. Set the acceleration time constant at the home position return. Set an acceleration time from $0 \mathrm{r} / \mathrm{min}$ or $0 \mathrm{~mm} / \mathrm{s}$ to the rated speed. Additionally, when 20000 ms or more value is set, it will be clamped to 20000 ms . Setting range: 0 to 50000	$\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$	$\bar{\lambda}$	\bigcirc	$\$ \hlinePC30 STA2 Acceleration time constant 2& &Set an second acceleration time constant for the automatic operation of the indexer method. Set an acceleration time from $0 \mathrm{r} / \mathrm{min}$ to the rated speed. Additionally, when 20000 ms or more value is set, it will be clamped to 20000 ms . Setting range: 0 to 50000 & $\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$ & \rangle	\rangle	${ }^{\circ}$
$\begin{array}{\|l\|} \hline \text { PC31 } \\ \text { STB2 } \\ \text { Home } \\ \text { position } \\ \text { return } \\ \text { deceleration } \\ \text { time constant } \\ \hline \end{array}$		This parameter is used when a home position return is executed with the program method. Set the deceleration time constant at the home position return. Set a deceleration time from the rated speed to $0 \mathrm{r} / \mathrm{min}$ or $0 \mathrm{~mm} / \mathrm{s}$. Additionally, when 20000 ms or more value is set, it will be clamped to 20000 ms . Setting range: 0 to 50000	$\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$	$\bar{\lambda}$	\bigcirc	\rangle		

7. PARAMETERS

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O 0 0 0 0	Ј	の
PC31 STB2 Deceleration time constant 2		Set an second deceleration time constant for the automatic operation of the indexer method. Set a deceleration time from the rated speed to $0 \mathrm{r} / \mathrm{min}$. Additionally, when 20000 ms or more value is set, it will be clamped to 20000 ms . Setting range: 0 to 50000	$\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$	\checkmark	-	\bigcirc
PC35 TL2 Internal torque limit 2/internal thrust limit 2		Set the parameter on the assumption that the maximum torque or thrust is 100.0%. The parameter is set for limiting the torque of the servo motor or the thrust of the linear servo motor. No torque or thrust is generated when this parameter is set to " 0.0 ". When TL1 (Internal torque limit selection) is turned on, Internal torque limits 1 and 2 are compared and the lower value will be enabled. Set the parameter referring to section 3.6.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" and section 11.5.3 (6) of this Instruction Manual. Setting range: 0.0 to 100.0	$\begin{gathered} \hline 100.0 \\ {[\%]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O O ¢ U	Ј	¢
PC36 *DMD Status display selection	-_xx	Status display selection at power-on Select a status display shown at power-on. 00: Cumulative feedback pulse 01: Servo motor speed/linear servo motor speed 02: Droop pulses 03: Cumulative command pulses 04: Command pulse frequency 05: Analog speed command voltage (not used for the positioning mode) 06: Analog torque limit voltage 07: Regenerative load ratio 08: Effective load ratio 09: Peak load ratio 0A: Instantaneous torque/instantaneous thrust 0B: Position within one-revolution/virtual position within one-revolution (1 pulse unit) 0C: Position within one-revolution/virtual position within one-revolution (1000 pulses unit) OD: ABS counter/virtual ABS counter OE: Load to motor inertia ratio/load to motor mass ratio 0F: Bus voltage 10: Encoder inside temperature 11: Settling time 12: Oscillation detection frequency 13: Number of tough drives 14: Unit power consumption (increment of 1 W) 15: Unit power consumption (increment of 1 kW) 16: Unit total power consumption (increment of 1 Wh) 17: Unit total power consumption (increment of 100 kWh) 18: Load-side cumulative feedback pulses (Note 1, 3) 19: Load-side droop pulses (Note 1, 3) 1A: Load-side encoder information 1 (1 pulse unit) (Note 1, 3) 1B: Load-side encoder information 1 (100000 pulses unit) (Note 1, 3) 1C: Load-side encoder ABS counter (Note 1, 3) 1D: Z-phase counter (1 pulse unit) (Note 2, 3) 1E: Z-phase counter (100000 pulses unit) (Note 2, 3) 1F: Electrical angle (1 pulse unit) (Note 2, 3) 20: Electrical angle (100000 pulses unit) (Note 2, 3) 21: Current position 22: Command position 23: Command remaining distance 24: Point table No./Program No./Station position No. 25: Step No. 26: Override voltage 27: Override level 28: Cam axis one cycle current value 29: Cam standard position 2A: Cam axis feed current value 2B: Cam No. in execution 2C: Cam stroke amount in execution 2D: Main axis current value 2E: Main axis one cycle current value Note 1 . Setting "18 to 1 C " will trigger [AL. 37] in the mode other than the fully closed loop control mode. 2. Setting 1D to 20 will trigger [AL. 37] in the mode other than the linear servo motor control mode. 3. This is not available with the MR-J4-03A6-RJ servo amplifier.	00h	\bigcirc	\bigcirc	0

No./ symbol/name	Setting digit	Function		Initial value [unit]	Control mode			
				O 0 0 0 0	Ј	の		
PC36 *DMD Status display selection	${ }_{-}{ }_{\text {_- }}$	Status display at power-on in corresp 0 : Depends on the control mode 1: Depends on the last two digit settin	ontrol mode parameter		Oh	\bigcirc	\bigcirc	\bigcirc
	X_{-}	For manufacturer setting		Oh				
PC37 VCO Analog override Offset		Set an offset voltage of VC (Override input). This will be automatic setting by executing VC automatic offset. Setting range: -9999 to 9999		$\begin{gathered} 0 \\ {[\mathrm{mV}]} \end{gathered}$	\bigcirc	\bigcirc	δ	
PC38 TPO Analog torque limit offset limit offset		Set the offset voltage of TLA (Analog torque limit).Setting range: -9999 to 9999		$\begin{gathered} 0 \\ {[\mathrm{mV}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	
PC39 MO1 Analog monitor 1 offset		Set the offset voltage of MO1 (Analog monitor 1).Setting range: -9999 to 9999		$\begin{gathered} 0 \\ {[\mathrm{mV}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	
PC40 MO2 Analog monitor 2 offset		Set the offset voltage of MO2 (Analog monitor 2).Setting range: -9999 to 9999		$\begin{gathered} 0 \\ {[\mathrm{mV}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	
PC43 ERZ Error excessive alarm level		Set an error excessive alarm level. You can change the setting unit with "Error excessive alarm level" in [Pr. PC24]. Set this per rev. for rotary servo motors and direct drive motors. Set this per mm for linear servo motors. Setting "0" will be "3 rev" for rotary servo motors and direct drive motors and "100 mm" for linear servo motors. Setting over 200 rev will be clamped with 200 rev. Setting range: 0 to 1000		0 [rev]/ [mm]	\bigcirc	\bigcirc	\bigcirc	
$\begin{aligned} & \hline \text { PC44 } \\ & \text { *COP9 } \\ & \text { Function } \\ & \text { selection C-9 } \end{aligned}$	---x	For manufacturer setting		Oh				
	$-^{x}{ }_{-}$			Oh				
	${ }_{-} x^{\prime}$			Oh				
	$\mathrm{x}_{\text {- }}$ -	Load-side encoder cable communication method selection Select an encoder cable to be connected to the CN2L connector of MR-J4-_A_-RJ. 0: Two-wire type 1: Four-wire type When using an encoder of A/B/Z-phase differential output method, set " 0 ". Incorrect setting will trigger [AL. 70] and [AL. 71]. This digit is not available with MR-J4-03A6-RJ servo amplifiers.		Oh	\bigcirc	\bigcirc	¢	

No./ symbol/name	Setting digit	Function				Initial value [unit]	Control mode			
						O ¢ ¢ 0	J	の		
$\begin{aligned} & \hline \text { PC45 } \\ & \text { *COPA } \\ & \text { Function } \\ & \text { selection C-A } \end{aligned}$	- _ - ${ }^{\text {x }}$	Encoder pulse count polarity selection Select a polarity of the linear encoder or load-side encoder. 0 : Encoder pulse increasing direction in the servo motor CCW or positive direction 1: Encoder pulse decreasing direction in the servo motor CCW or positive direction This digit is not available with MR-J4-03A6-RJ servo amplifiers.					Oh	\bigcirc	\bigcirc	人
	$-^{x}$	For manufacturer setting				Oh				
	${ }_{-}{ }^{\text {- }}$ -	Selection of A/B/Z-phase input interface encoder Z-phase connection judgement function Select the non-signal detection status for the pulse train signal from the A/B/Z-phase input interface encoder used as a linear encoder or load-side encoder. This function is enabled only when you use an $A / B / Z-$ phase input interface encoder. This digit is not available with MR-J4-03A6-RJ servo amplifiers.				Oh	\bigcirc	\bigcirc		
		Setting value	Detection of disconnection	Alarm status						
			Z-phase-side non-signal	Full.	Lin.					
		0	Enabled	$\begin{aligned} & \hline \text { [AL. 71.6] } \\ & \text { (Z-phase) } \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline[\mathrm{AL} .20 .6] \\ \text { (Z-phase) } \\ \hline \end{array}$					
		1	Disabled							
	X	For manufacturer setting				Oh				
PC51 RSBR Forced stop deceleration time constant	Set a deceleration time constant when you use the forced stop deceleration function. Set the time per ms from the rated speed to $0 \mathrm{r} / \mathrm{min}$ or $0 \mathrm{~mm} / \mathrm{s}$. [Precautions] - If the servo motor torque or linear servo motor thrust is saturated at the maximum value during forced stop deceleration because the set time is too short, the time to stop will be longer than the set time constant. - [AL. 50 Overload alarm 1] or [AL. 51 Overload alarm 2] may occur during forced stop deceleration, depending on the set value. - After an alarm that leads to a forced stop deceleration, if an alarm that does not lead to a forced stop deceleration occurs or if the control circuit power supply is cut, dynamic braking will start regardless of the deceleration time constant setting.					$\begin{gathered} \hline 100 \\ {[\mathrm{~ms}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O ¢ ¢ 0	J	の
PC54 RSUP1 Vertical axis freefall prevention compensation amount		Set the compensation amount of the vertical axis freefall prevention function. Set it per servo motor rotation amount or linear servo motor travel distance. When setting a positive value, the servo motor/linear servo motor will pull in the direction of the servo motor rotation direction/linear servo motor travel direction at positioning address increasing with the servo motor rotation amount/linear servo motor travel distance unit. When setting a negative value, the servo motor/linear servo motor will pull in the direction of the servo motor rotation direction/linear servo motor travel direction at positioning address decreasing with the servo motor rotation amount/linear servo motor travel distance unit. For example, if a positive compensation amount is set when the [Pr. PA14 Rotation direction selection/travel direction selection] setting is "1", the axis will be pulled to the CW direction. The vertical axis freefall prevention function is performed when all of the following conditions are met. 1) The value of the parameter is other than " 0 ". 2) The forced stop deceleration function is enabled. 3) Alarm occurs or EM2 turns off when the (linear) servo motor speed is zero speed or less. 4) MBR (Electromagnetic brake interlock) was enabled in [Pr. PD23] to [Pr. PD26], [Pr. PD28], and [Pr. PD47], and the base circuit shut-off delay time was set in [Pr. PC16]. Setting range: -25000 to 25000	$\begin{gathered} \hline 0 \\ {[0.0001} \\ \mathrm{rev}] / \\ {[0.01} \\ \mathrm{mm}] \end{gathered}$	\bigcirc	O	\bigcirc
PC60 *COPD Function selection C-D	$--{ }^{\text {x }}$	Motor-less operation selection Set the motor-less operation. This is not used in the linear servo motor control mode, fully closed loop control, and DD motor control mode. 0: Disabled 1: Enabled	Oh	O	O	$\overline{ }$
	$-_{-}{ }^{\text {- }}$	High-resolution analog input selection Select the resolution of VC (Analog override). When you change parameters, perform offset adjustment with [Pr. PC37 Analog override offset]. The offset adjustment can be performed by executing VC automatic offset. Setting "1" while using a servo amplifier other than MR-J4-_A_-RJ, MR-J4-_A_-RU, and MR-J4-_A_-RZ will trigger [AL. 37]. 0: Disabled 1: Enabled This digit is available with servo amplifiers manufactured in November 2014 or later. This digit is not available with MR-J4-03A6-RJ servo amplifiers.	Oh	\bigcirc	\bigcirc	
	${ }_{-}{ }^{\text {x }}$	For manufacturer setting	Oh			
	$\mathrm{X}_{\text {- }}$	[AL. 9B Error excessive warning] selection 0 : [AL. 9B Error excessive warning] is disabled. 1: [AL. 9B Error excessive warning] is enabled. This parameter is available with servo amplifiers with software version B4 or later.	Oh	\bigcirc	\bigcirc	\bigcirc

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				(1)	U	~
PC66 LPSPL Mark detection range + (lower three digits) PC67 LPSPH Mark detection range + (upper three digits)		Set the upper limit of the mark detection. Upper and lower are a set. When the roll feed display is enabled, set this value with the travel distance from the starting position. Setting address: The unit will be changed to $10^{\text {STM }}\left[\mu \mathrm{m}\right.$], $10^{-(\mathrm{STM}-4)}$ [inch], 10^{-3} [degree], or [pulse] with the setting of [Pr. PT01]. Set a same sign for [Pr. PC66] and [Pr. PC67]. A different sign will be recognized as minus sign data. When changing the direction to address decreasing, change it from the - side of the mark detection ([Pr. PC68] and [Pr. PC69]). An incorrect order of the setting will trigger [AL. 37]. Therefore, cycling power may be required after [Pr. PC66] to [Pr. PC69] are all set. This parameter setting is available with servo amplifiers with software version B7 or later. Setting range: -999 to 999	0 Refer to Function column for unit.	\bigcirc	\bigcirc	
PC68 LPSNL Mark detection range - (lower three digits) PC69 LPSNH Mark detection range - (upper three digits)		Set the lower limit of the mark detection. Upper and lower are a set. When the roll feed display is enabled, set this value with the travel distance from the starting position. Setting address: The unit will be changed to $10^{\text {STM }}\left[\mu \mathrm{m}\right.$], $10^{-(\mathrm{STM}-4)}$ [inch], 10^{-3} [degree], or [pulse] with the setting of [Pr. PT01]. Set a same sign for [Pr. PC68] and [Pr. PC69]. A different sign will be recognized as minus sign data. When changing the direction to address increasing, change it from the + side of the mark detection ([Pr. PC66] and [Pr. PC67]). An incorrect order of the setting will trigger [AL. 37]. Therefore, cycling power may be required after [Pr. PC66] to [Pr. PC69] are all set. This parameter setting is available with servo amplifiers with software version B7 or later. Setting range: -999 to 999	0 Refer to Function column for unit.	\bigcirc	\bigcirc	

7. PARAMETERS

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				$\begin{array}{\|l} \hline \mathrm{O} \\ \mathrm{o} \\ \mathrm{o} \\ \hline \mathrm{O} \end{array}$	〕	ゅ
PC73 ERW Error excessive warning level		Set an error excessive warning level. To enable the parameter, set "[AL. 9B Error excessive warning] selection" to "Enabled (1 _ _ _)" in [Pr. PC60]. The setting unit can be changed with "Error excessive alarm/error excessive warning level unit selection" in [Pr. PC24]. Set this per rev. for rotary servo motors and direct drive motors. When " 0 " is set, 1 rev will be applied. Setting over 200 rev will be clamped to 200 rev . Set this per mm for linear servo motors. Setting "0" will be 50 mm . When an error reaches the set value, [AL. 9B Error excessive warning] will occur. When the error decreases lower than the set value, the warning will be canceled automatically. The minimum pulse width of the warning signal is 100 [ms]. Set as follows: [Pr. PC73 Error excessive warning level] < [Pr. PC43 Error excessive alarm level] When you set as [Pr. PC73 Error excessive warning level] \geq [Pr. PC43 Error excessive alarm level], [AL. 52 Error excessive] will occur earlier than the warning. This parameter setting is available with servo amplifiers with software version B4 or later. Setting range: 0 to 1000	$\begin{gathered} 0 \\ {[\mathrm{rev}] /} \\ {[\mathrm{mm}]} \end{gathered}$	\bigcirc		

7.2.4 I/O setting parameters ([Pr. PD__])

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				l	〕	¢
PD01 *DIA1 Input signal automatic on selection 1	Select input devices to turn on them automatically.					
	$\underset{(H E X)}{---x}$	___x (BIN): For manufacturer setting	Oh	$\triangle>$		
		- X{-}(BIN): For manufacturer setting				
		$\begin{aligned} & \hline x^{x} \text { (BIN): SON (Servo-on) } \\ & \text { 0: Disabled (Use for an external input signal.) } \\ & \text { 1: Enabled (automatic on) } \end{aligned}$		\bigcirc	\bigcirc	\bigcirc
		$\mathrm{x}_{\ldots-\ldots}$ (BIN): For manufacturer setting				
		___x (BIN): PC (Proportional control) 0 : Disabled (Use for an external input signal.) 1: Enabled (automatic on)	Oh	\bigcirc	\bigcirc	\bigcirc
		_ _ X _ (BIN): TL (External torque/external thrust limit selection) 0: Disabled (Use for an external input signal.) 1: Enabled (automatic on)		\bigcirc	\bigcirc	\bigcirc
		$\chi_{\text {- }} \mathrm{x}_{\text {_ }}$ (BIN): For manufacturer setting		-		
		$\mathrm{x}_{\text {_ }}{ }_{\text {- }}$ (BIN): For manufacturer setting				
	$-_{(\mathrm{HEX})}^{\mathrm{x}}$	___ \times (BIN): For manufacturer setting	Oh			
		-_ ${ }_{\text {- }}$ (BIN): For manufacturer setting				,
		${ }_{-} x_{\text {_ }}$ (BIN): LSP (Forward rotation stroke end) 0: Disabled (Use for an external input signal.) 1: Enabled (automatic on)		\bigcirc	\bigcirc	0
		x \qquad (BIN): LSN (Reverse rotation stroke end) 0 : Disabled (Use for an external input signal.) 1: Enabled (automatic on)		\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & x_{\text {(HEX) }} \\ & \hline \end{aligned}$	___x (BIN): EM2 (Forced stop 2)/EM1 (Forced stop 1) 0: Disabled (Use for an external input signal.) 1: Enabled (automatic on)	Oh	\bigcirc	\bigcirc	\bigcirc
		_ - $\mathrm{X}_{\text {_ }}$ (BIN): For manufacturer setting		,		
		$\chi_{\text {_ }} \mathrm{x}_{\text {_ }}$ (BIN): For manufacturer setting				
		$x_{\text {_ }}{ }^{\text {(}}$ (BIN): For manufacturer setting				

7. PARAMETERS

No.l symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				0 0 0 0 0	Ј	๗
PD06 *DI2H Input device selection 2 H	Any input device can be assigned to the CN1-16 pin.					
	_x ${ }^{\text {c }}$	Not used with the positioning mode.	21h			
	XX_-	Positioning mode - Device selection Refer to table 7.10 in [Pr. PD04] for settings.	20h	\bigcirc	\bigcirc	\bigcirc
PD08 *DI3H Input device selection 3 H	Any input device can be assigned to the CN1-17 pin.					
	$\begin{array}{\|l\|} \hline-\quad x \mathrm{x} \\ \hline \mathrm{xx}{ }^{2} \\ \hline \end{array}$	Not used with the positioning mode.	07h	>		
		Positioning mode - Device selection Refer to table 7.10 in [Pr. PD04] for settings.	07h	\bigcirc	0	0
PD10 *DI4H Input device selection 4H	Any input device can be assigned to the CN1-18 pin.					
	xx	Not used with the positioning mode.	08h	-		
	x $\mathrm{X}_{\text {_ }}$	Positioning mode - Device selection Refer to table 7.10 in [Pr. PD04] for settings.	08h	\bigcirc	0	\bigcirc
PD12 *DI5H Input device selection 5H	Any input device can be assigned to the CN1-19 pin.					
	_xx	Not used with the positioning mode.	03h			
	X $\mathrm{X}_{\text {- }}$	Positioning mode - Device selection Refer to table 7.10 in [Pr. PD04] for settings.	38h	\bigcirc	O	O
PD14 *DI6H Input device selection 6H	Any input device can be assigned to the CN1-41 pin.					
	x x	Not used with the positioning mode.	20h	,		
	$\mathrm{XX}_{\text {- }}$	Positioning mode - Device selection Refer to table 7.10 in [Pr. PD04] for settings.	39h	\bigcirc	O	\bigcirc
PD18 *DI8H Input device selection 8H	Any input device can be assigned to the CN1-43 pin.					
	-xx	Not used with the positioning mode.	00h	,		
	x $x_{\text {_ }}$ -	Positioning mode - Device selection Refer to table 7.10 in [Pr. PD04] for settings.	0Ah	\bigcirc	0	0
PD20 *DI9H Input device selection 9H	Any input device can be assigned to the CN1-44 pin.					
	xx	Not used with the positioning mode.	00h	,	-	-
	x ${ }_{\text {¢ }}$ -	Positioning mode - Device selection Refer to table 7.10 in [Pr. PD04] for settings.	0Bh	\bigcirc	0	\bigcirc
PD22 *DI10H Input device selection 10H	Any input device can be assigned to the CN1-45 pin.					
	-_x ${ }^{\text {x }}$	Not used with the positioning mode.	23h	,		
	XX_-	Positioning mode - Device selection Refer to table 7.10 in [Pr. PD04] for settings.	2Bh	\bigcirc	0	\bigcirc

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O 0 mo 0	〕	の
PD23 *DO1 Output device	-_xx	Device selection Any output device can be assigned to the CN1-22 pin. Refer to table 7.11 for settings.	04h	\bigcirc	O	\bigcirc
Output device selection 1	- $\mathrm{x}_{\text {- }}$	For manufacturer setting	Oh	,		
	$\mathrm{x}_{\text {- }}$		Oh			,

Table 7.11 Selectable output devices

Setting value	Output device (Note 1)		
	CP/BCD	CL	PS
- 00	Always off	Always off	Always off
-02	RD	RD	RD
-03	ALM	ALM	ALM
- - 04	INP	INP	INP
- - 05	MBR	MBR	MBR
$\begin{array}{r} \hline-\mathrm{O} 6 \\ \text { (Note 2) } \end{array}$	DB	DB	DB
- - 07	TLC	TLC	TLC
-08	WNG	WNG	WNG
_-09	BWNG	BWNG	BWNG
__0 A	SA	SA	Always off
_-0B	Always off	Always off	Always off
-_0C	ZSP	ZSP	ZSP
	MTTR	MTTR	MTTR
-_0 F	CDPS	CDPS	CDPS
$\begin{aligned} & -10 \\ & (\text { Note 2) } \end{aligned}$	CLDS	CLDS	CLDS
_- 11	ABSV	ABSV	ABSV
$\begin{aligned} & -{ }^{-1 \mathrm{~F}} \\ & \text { (Note 2) } \end{aligned}$	$\begin{gathered} \hline \text { CPCC } \\ (\text { Note } 4) \end{gathered}$	$\begin{gathered} \hline \text { CPCC } \\ (\text { Note } 4) \end{gathered}$	
_-23	CPO	CPO	CPO
-_24	ZP	ZP	ZP
_-25	POT	POT	Always off
_- 26	PUS	PUS	Always off
-_27	MEND	MEND	MEND
$\begin{aligned} & \hline-\mathbf{-}^{29} 9 \\ & \text { (Note 2) } \end{aligned}$	CLTS (Note 4)	$\begin{gathered} \hline \text { CLTS } \\ \text { (Note 4) } \end{gathered}$	
$\begin{array}{\|l\|} \hline--^{2} \\ \text { (Note 2) } \\ \hline \end{array}$	CLTSM (Note 4)	CLTSM (Note 4)	
_-2 C	PED	PED	
-_2 ${ }^{\text {D }}$	-	SOUT	
--2E		OUT1	
-_ 2 F		OUT2	
_-30	-	OUT3	
-_31	ALMWNG	ALMWNG	ALMWNG
-_32	BW9F	BW9F	BW9F
-_3 3	MSDH	MSDH	-
-_34	MSDL	MSDL	
$\begin{array}{\|l} \hline-{ }^{37} 7 \\ \text { (Note 2) } \end{array}$	CAMS (Note 4)	CAMS (Note 4)	

7. PARAMETERS

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O	Ј	の
PD29 *DIF Input filter setting	Select a filter for the input signal.					
	- - - x	Input signal filter selection If external input signal causes chattering due to noise, etc., input filter is used to suppress it. 0: None 1: 0.888 [ms] 2: 1.777 [ms] 3: $2.666[\mathrm{~ms}]$ 4: 3.555 [ms] 5: 4.444 [ms] 6: 5.333 [ms]	4h	\bigcirc	\bigcirc	\bigcirc
	$-^{\text {x }}$ -	RES (Reset) dedicated filter selection 0: Disabled 1: Enabled (50 [ms])	Oh	\bigcirc	\bigcirc	\bigcirc
	\sim^{X}--	CR (Clear) dedicated filter selection 0: Disabled 1: Enabled (50 [ms])	Oh	\bigcirc	\bigcirc	\bigcirc
	$\mathrm{x}_{\text {_- }}$	For manufacturer setting	Oh)		

No./ symbol/name	Setting digit	Function			Initial value [unit]	Control mode										
					0 0 mo 0	Ј	n									
PD30 *DOP1 Function selection D-1	---x	Stop metho rotation stro Select a sto rotation stro	election for LSP (Forward rotation strok end) off method for LSP (Forward rotation stroke end) off. (Refer to section 7.5.)	end) off or LSN (Reverse end) off or LSN (Reverse		Oh	\bigcirc	O	\bigcirc							
	-_x_	Base circuit status selection for RES (Reset) on 0 : Base circuit shut-off 1: No base circuit shut-off			Oh	\bigcirc	0	\bigcirc								
	-x_-	```Stop method selection at software limit detection Select a stop method selection at software limit detection. (Refer to section 7.6.) 0: Quick stop (home position erased) 1: Slow stop (home position erased) 2: Slow stop (deceleration to a stop by deceleration time constant) 3: Quick stop (stop by clearing remaining distance)```			Oh	\bigcirc	0	$\$ \hline & $\mathrm{x}_{\text {_ }}$	Servo motor thermistor or linear servo motor enabled/disabled selection 0: Enabled 1: Disabled The setting in this digit will be disabled when using a servo motor or linear servo motor without thermistor.			Oh	\bigcirc	0	\bigcirc	
	_-x	For manufacturer setting			Oh											
	x				Oh											
	${ }^{\mathrm{x}}$--				Oh											
	$\mathrm{x}_{\text {_- }}$	```Mark detection fast input signal filter selection 0 : Standard \(0.166[\mathrm{~ms}]\) 1: 0.055 [ms] 2: \(0.111[\mathrm{~ms}]\) 3: \(0.166[\mathrm{~ms}]\) 4: \(0.222[\mathrm{~ms}]\) 5: 0.277 [ms] 6: 0.333 [ms] 7: \(0.388[\mathrm{~ms}]\) 8: 0.444 [ms] 9 to E: Disabled (Setting this will be the same as "F".) F: Non-filter This digit will be enabled when MSD (Mark detection) is assigned to the CN1-10 pin with [Pr. PD44].```			Oh	\bigcirc	\bigcirc									
PD32 *DOP3 Function selection D-3	--_x	CR (Clear) selection This is used to set CR (Clear). 0 : Deleting droop pulses by turning on the device 1: Continuous deleting of droop pulses during the device on 2: Disabled			Oh	\bigcirc	0	\bigcirc								
	-	For manufacturer setting			Oh											
	x^{x}				Oh											
	$\mathrm{x}_{\text {- }}$				Oh											

7. PARAMETERS

7. PARAMETERS

7. PARAMETERS

No./ symbol/name	Settingdigit	Function	Initial value [unit]	Control mode		
				O 0 0 0 0	〕	¢
PD44 *DI11H Input device selection 11H	Any input device can be assigned to the CN1-10 pin/CN1-37 pin.					
	x x	Not used with the positioning mode.	00h			
	$\mathrm{xx}_{\text {_ }}$	Positioning mode - Device selection Refer to table 7.10 in [Pr. PD04] for setting values. When " 00 " is set, PP/PP2 (Forward rotation pulse/Manual pulse generator) will be assigned. The CN1-37 pin is available with servo amplifiers having software version B7 or later, and manufactured in January, 2015 or later.	3Ah	\bigcirc	\bigcirc	-
PD46 *DI12H Input device selection 12H	Any input device can be assigned to the CN1-35 pin and the CN1-38 pin.					
	x x	Not used with the positioning mode.	00h			
	x $x_{\text {_ }}$	Positioning mode - Device selection Refer to table 7.10 in [Pr. PD04] for setting values. When "00" is set, NP/NP2 (Reverse rotation pulse/Manual pulse generator) will be assigned. The CN1-38 pin is available with servo amplifiers having software version B7 or later, and manufactured in January, 2015 or later.	3Bh	\bigcirc	\bigcirc	
PD47 *DO7 Output device selection 7	Any output device can be assigned to the CN1-13 pin and CN1-14 pin. This parameter is not available with MR-J4-03A6-RJ servo amplifiers.					
	-_xx	Device selection Any output device can be assigned to the CN1-13 pin. Refer to table 7.11 in [Pr. PD23] for setting values.	00h	\bigcirc	\bigcirc	\bigcirc
	x ${ }_{\text {_ _ }}$	Device selection Any output device can be assigned to the CN1-14 pin. Refer to table 7.11 in [Pr. PD23] for setting values.	00h	\bigcirc	\bigcirc	0

7.2.5 Extension setting 2 parameters ([Pr. PE__])

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				管	Ј	๑
PE07 BC2 Fully closed loop control Position deviation error detection level		Set [AL. 42.8 Fully closed loop control error by position deviation] of the fully closed loop control error detection. When the position deviation between the servo motor encoder and load-side encoder becomes larger than the setting value, the alarm will occur. This parameter is not available with MR-J4-03A6-RJ servo amplifiers. Setting range: 1 to 20000	$\begin{gathered} 100 \\ {[\text { kpulse] }} \end{gathered}$	\bigcirc	\bigcirc	$\overline{ }$
PE08 DUF Fully closed loop dual feedback filter		Set a dual feedback filter band. For details, refer to section 17.3.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". This parameter is not available with MR-J4-03A6-RJ servo amplifiers. Setting range: 1 to 4500	$\begin{gathered} 10 \\ {[\mathrm{rad} / \mathrm{s}]} \end{gathered}$	\bigcirc	\bigcirc	\rangle
PE10 FCT3 Fully closed loop function selection 3	x	For manufacturer setting	Oh			
	${ }^{x}$	Fully closed loop control - Position deviation error detection level - Unit selection 0: 1 kplulse unit 1: 1 pulse unit This digit is not available with MR-J4-03A6-RJ servo amplifiers.	Oh	\bigcirc	\bigcirc	\rangle
	x	For manufacturer setting	Oh			
			Oh			
PE34 *FBN2 Fully closed loop control Feedback pulse electronic gear 2 - Numerator		Set a numerator of electronic gear for the servo motor encoder pulse at the fully closed loop control. Set the electronic gear so that the number of servo motor encoder pulses for one servo motor revolution is converted to the resolution of the load-side encoder. For details, refer to section 17.3 .1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". This parameter is not available with MR-J4-03A6-RJ servo amplifiers. Setting range: 1 to 65535	1	\bigcirc	\bigcirc	-
PE35 *FBD2 Fully closed loop control - Feedback pulse electronic gear 2 Denominator		Set a denominator of electronic gear for the servo motor encoder pulse at the fully closed loop control. Set the electronic gear so that the number of servo motor encoder pulses for one servo motor revolution is converted to the resolution of the load-side encoder. For details, refer to section 17.3.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual". This parameter is not available with MR-J4-03A6-RJ servo amplifiers. Setting range: 1 to 65535	1	\bigcirc	\bigcirc	-
PE41 EOP3 Function selection E-3	--- ${ }^{\text {x }}$	Robust filter selection 0: Disabled 1: Enabled When you select "Enabled" of this digit, the machine resonance suppression filter 5 set in [Pr. PB51] is not available.	Oh	\bigcirc	\bigcirc	\bigcirc
	- ${ }^{\text {a }}$	For manufacturer setting	Oh			
	_x		Oh			
	$\mathrm{x}_{\text {_- }}$		Oh			
PE44 LMCP Lost motion compensation positive-side compensation value selection		Set the lost motion compensation for when reverse rotation (CW) switches to forward rotation (CCW) in increments of 0.01% assuming the rated torque as 100%. This parameter is available with servo amplifiers with software version B4 or later. Setting range: 0 to 30000	$\begin{gathered} 0 \\ {[0.01 \%]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O 0 0 0 0	Ј	の
PE45 LMCN Lost motion compensation negative-side compensation value selection		Set the lost motion compensation for when forward rotation (CCW) switches to reverse rotation (CW) in increments of 0.01% assuming the rated torque as 100%. This parameter is available with servo amplifiers with software version B4 or later. Setting range: 0 to 30000	$\begin{array}{\|c\|} \hline 0 \\ {[0.01 \%]} \end{array}$	\bigcirc	\bigcirc	\bigcirc
PE46 LMFLT Lost motion filter setting		Set the time constant of the lost motion compensation filter in increments of 0.1 ms . If the time constant is 0 , the torque is compensated with the value set in [Pr. PE44] and [Pr. PE45]. If the time constant is other than 0 , the torque is compensated with the high-pass filter output value of the set time constant, and the lost motion compensation will continue. This parameter is available with servo amplifiers with software version B4 or later. Setting range: 0 to 30000	$\begin{gathered} 0 \\ {[0.1 \mathrm{~ms}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PE47 TOF Torque offset		Set this when canceling unbalanced torque of vertical axis. Set this assuming the rated torque of the servo motor as 100%. The torque offset does not need to be set for a machine not generating unbalanced torque. The torque offset cannot be used for linear servo motors and direct drive motors. Set "0". This parameter is available with servo amplifiers with software version B4 or later. Setting range: -10000 to 10000	$\begin{array}{\|c\|} \hline 0 \\ {[0.01 \%]} \end{array}$	\bigcirc	\bigcirc	\bigcirc
PE48 *LMOP Lost motion compensation function selection	---x	Lost motion compensation selection 0 : Lost motion compensation disabled 1: Lost motion compensation enabled This parameter is available with servo amplifiers with software version B4 or later.	Oh	\bigcirc	\bigcirc	\bigcirc
	${ }_{-}{ }^{\text {- }}$	Unit setting of lost motion compensation non-sensitive band 0: 1 pulse unit 1: 1 kplulse unit This parameter is available with servo amplifiers with software version B4 or later.	Oh	\bigcirc	\bigcirc	\bigcirc
	x	For manufacturer setting	Oh			
			Oh			
PE49 LMCD Lost motion compensation timing		Set the lost motion compensation timing in increments of 0.1 ms . You can delay the timing to perform the lost motion compensation for the set time. This parameter is available with servo amplifiers with software version B4 or later. Setting range: 0 to 30000	$\begin{gathered} \hline 0 \\ {[0.1} \\ \mathrm{ms}] \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PE50 LMCT Lost motion compensation non-sensitive band		Set the lost motion compensation non-sensitive band. When the model position droop is the setting value or less, the speed will be 0 . Setting can be changed in [Pr. PE48]. Set the parameter per encoder unit. This parameter is available with servo amplifiers with software version B4 or later. Setting range: 0 to 65535		\bigcirc	\bigcirc	\bigcirc

7.2.6 Extension setting 3 parameters ([Pr. PF__])

7. PARAMETERS

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O 0 0 0 0	Ј	の
PF31 FRIC Machine diagnosis function - Friction judgement speed		Set a (linear) servo motor speed that divides a friction estimation area into high and low during the friction estimation process of the machine diagnosis. Setting "0" will set a value half of the rated speed. When your operation pattern is under the rated speed, we recommend that you set a half value of the maximum speed.		\bigcirc	\bigcirc	\bigcirc
PF34*SOP3RS-422communication functionselection 3	-_-x	For manufacturer setting	Oh			
	${ }_{--} x^{\prime}$		Oh			
	${ }_{-} x^{x^{\prime}}$		Oh			
	$\mathrm{x}_{\text {- }--}$	MR-PRU03 selection Select this if using an MR-PRU03. 0: Disabled 1: Enabled This digit is not available with MR-J4-03A6-RJ servo amplifiers.	Oh	\bigcirc	\bigcirc	\bigcirc

7.2.7 Linear servo motor/DD motor setting parameters ([Pr. PL_{-}_])

POINT

The linear servo motor/DD motor setting parameters ([Pr. PL__])]) can be used with the direct drive servo system for the indexer method.

- Linear servo motor/DD motor setting parameters ([Pr. PL_ _]) cannot be used with MR-J4-03A6-RJ servo amplifiers.

No./ symbol/name	Setting digit	Function				Initial value [unit]	Control mode			
						录	Ј	の		
PL01 *LIT1 Linear servo motor/DD motor function selection 1	--- ${ }^{\text {x }}$	Linear servo motor/DD motor magnetic pole detection selection The setting value "0" will be enabled only with absolute position linear encoders. 0 : Magnetic pole detection disabled 1: Magnetic pole detection at first servo-on 5: Magnetic pole detection at every servo-on					1h	O	O	O
	-- ${ }^{\text {x }}$	For manufacturer setting				Oh				
	$\chi_{-} x_{-}$	Stop interval selection at the home position return Set a stop interval for the dog type home position return. The digit is enabled only for linear servo motors. $0: 2^{13}(=8192)$ pulses 1: $2^{17}(=131072)$ pulses 2: $2^{18}(=262144)$ pulses 3: $2^{20}(=1048576)$ pulses 4: $2^{22}(=4194304)$ pulses 5: $2^{24}(=16777216)$ pulses 6: $2^{26}(=67108864)$ pulses				3h	\bigcirc	\bigcirc		
	$\mathrm{x}_{\text {_- }}$	For manufacturer setting				Oh				
PL02 *LIM Linear encoder resolution Numerator		Set a linear encoder resolution per $\mu \mathrm{m}$ with [Pr. PL02] and [Pr. PL03]. Set a numerator to [Pr. PL02]. This is enabled only for linear servo motors. Setting range: 1 to 65535				$\begin{aligned} & 1000 \\ & {[\mu \mathrm{~m}]} \end{aligned}$	\bigcirc	\bigcirc	λ	
PL03 *LID Linear encoder resolution Denominator		Set a linear encoder resolution per $\mu \mathrm{m}$ with [Pr. PL02] and [Pr. PL03]. Set a denominator to [Pr. PL03]. This is enabled only for linear servo motors. Setting range: 1 to 65535				$\begin{aligned} & 1000 \\ & {[\mu \mathrm{~m}]} \end{aligned}$	O	\bigcirc	\rangle	
PL04 *LIT2 Linear servo motor/DD motor function selection 2	$--{ }^{x}$	[AL. 42 Servo control error] detection function selection Refer to the following table.				3h	O	\bigcirc	O	
		Setting value	Thrust/torque deviation error (Note)	Speed deviation error (Note)	Position deviation error (Note)					
		0	Disabled	Disabled	Disabled					
		1			Enabled					
		2		Enabled	Disabled					
		3		Enabled	Enabled					
		4		Disabled	Disabled					
		5	Enabled	Disabled	Enabled					
		6		Enabled	Disabled					
		7			Enabled					
		Note. For the details of each deviation error, refer to chapter 15 and 16 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".								

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O 0 0 0 0	Ј	の
PL04 *LIT2 Linear servo motor/DD motor function selection 2	- ${ }^{\text {x }}$	For manufacturer setting	Oh			
	X_{-}	For manufacturer setting	Oh			
		[AL. 42 Servo control error] detection function controller reset condition selection 0 : Reset disabled (reset by powering off/on enabled) 1: Reset enabled	Oh	\bigcirc	\bigcirc	\bigcirc
PL05 LB1 Position deviation error detection level		Set a position deviation error detection level of the servo control error detection. When the deviation between a model feedback position and actual feedback position is larger than the setting value, [AL. 42 Servo control error] will occur. However, when " 0 " is set, the level varies depending on the operation mode in [Pr. PA01]. Linear servo motor: 50 mm Direct drive motor: 0.09 rev Setting range: 0 to 1000	$\begin{gathered} 0 \\ {[\mathrm{~mm}] /} \\ {[0.01} \\ \mathrm{rev}] \end{gathered}$	O	\bigcirc	\bigcirc
PL06 LB2 Speed deviation error detection level		Set a speed deviation error detection level of the servo control error detection. When the deviation between a model feedback speed and actual feedback speed is larger than the setting value, [AL. 42 Servo control error] will occur. However, when " 0 " is set, the level varies depending on the operation mode in [Pr. PA01]. Linear servo motor: $1000 \mathrm{~mm} / \mathrm{s}$ Direct drive motor: $100 \mathrm{r} / \mathrm{min}$ Setting range: 0 to 5000	$\begin{gathered} 0 \\ {[\mathrm{~mm} / \mathrm{s}] /} \\ {[\mathrm{r} / \mathrm{min}]} \end{gathered}$	O	\bigcirc	\bigcirc
PL07 LB3 Torque/thrust deviation error detection level		Set a torque/thrust deviation error detection level of the servo control error detection. When the deviation between a current command and current feedback is larger than the setting value, [AL. 42.3 Servo control error by torque/thrust deviation] will occur. Setting range: 0 to 1000	$\begin{aligned} & 100 \\ & {[\%]} \end{aligned}$	O	\bigcirc	\bigcirc
PL08 *LIT3 Linear servo motor/DD motor function selection 3	- - - ${ }^{\text {x }}$	Magnetic pole detection method selection 0: Position detection method 4: Minute position detection method	Oh	O	\bigcirc	O
	${ }_{-}{ }^{\text {- }}$	For manufacturer setting	1h			
	${ }_{-}{ }^{\text {- }}$ -	Magnetic pole detection - Stroke limit enabled/disabled selection 0: Enabled 1: Disabled	Oh	\bigcirc	\bigcirc	\bigcirc
	$\mathrm{x}_{\text {_- }}$	For manufacturer setting	Oh			
PL09 LPWM Magnetic pole detection voltage level		Set a direct current exciting voltage level during the magnetic pole detection. If [AL. 32 Overcurrent], [AL. 50 Overload 1], or [AL. 51 Overload 2] occurs during the magnetic pole detection, decrease the setting value. If [AL. 27 Initial magnetic pole detection error] occurs during the magnetic pole detection, increase the setting value. Setting range: 0 to 100	$\begin{gathered} 30 \\ {[\%]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PL17 LTSTS Magnetic pole detection - Minute position detection method - Function selection	---x	Response selection Set a response of the minute position detection method. When reducing a travel distance at the magnetic pole detection, increase the setting value. Refer to table 7.12 for settings.	Oh	O	\bigcirc	\bigcirc
	$\sim_{-}{ }^{\text {x }}$	Load to motor mass ratio/load to motor inertia ratio selection Select a load to mass of the linear servo motor primary-side ratio or load to mass of the direct drive motor inertia ratio used at the minute position detection method. Set a closest value to the actual load. Refer to table 7.13 for settings.	Oh	O	\bigcirc	O
	- ${ }_{\text {- }}$	For manufacturer setting	Oh			
			Oh			

No./ symbol/name	Setting digit	Function				Initial value [unit]	Control mode			
						$\begin{array}{\|l} \hline \mathrm{O} \\ \text { 只 } \\ \mathrm{O} \end{array}$	J	¢		
PL17 LTSTS Magnetic pole detection - Minute position detection method - Function selection		Table 7.12 Table 7.13	Response of minern magnetic	position det detection Setting value ratio/load to	ection method at motor inertia ratio			\bigcirc	\bigcirc	\bigcirc
PL18 IDLV Magnetic pole detection Minute position detection method Identification signal amplitude		Set an identificatio This parameter is position detection However, setting Setting range: 0 to	on signal amplitude u enabled only when the method. "0" will be 100% amp 100	the minute pos gnetic pole dete	ition detection method. ction is the minute	$\begin{gathered} 0 \\ {[\%]} \end{gathered}$	\bigcirc	0	0	

7.2.8 Option setting parameters ([Pr. Po__])

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				会	Ј	¢
Po02 *ODI1 MR-D01 input device selection 1	Any input device can be assigned to the CN10-21 pin and CN10-26 pin.					
	--xx	CN10-21 selection Select an input signal function of the CN10-21 pin. Refer to table 7.14 for settings. This parameter setting is available with servo amplifiers with software version B7 or later.	02h	0	O	0
	x $\mathrm{x}_{\text {- }}$	CN10-26 selection Select an input signal function of the CN10-26 pin. Refer to table 7.14 for settings. This parameter setting is available with servo amplifiers with software version B7 or later.	03h	\bigcirc	O	0

No./ symbol/name	Setting digit	Function				Initial value [unit]	Control mode			
						O ¢ 0	Ј	の		
Po02 *ODI1 MR-D01 input device selection 1	Table 7.14 Selectable input devices Setting Input device (Note)									
		value	CP/BCD	CL	PS					
		02	SON	SON	SON					
		03	RES	RES	RES					
		04	PC	PC	PC					
		05	TL	TL	TL					
		06	CR	CR	CR					
		07	ST1	ST1	ST1					
		08	ST2	ST2	-					
		09	TL1	TL1	TL1					
		0A	LSP	LSP	LSP					
		OB	LSN	LSN	LSN					
		OD	CDP	CDP	CDP					
		OF	MECR	MECR	-					
		12	MSD	MSD	-					
		1E	CLTC	CLTC	-					
		1F	CPCD	CPCD	T0					
		20	MD0	MD0	MD0					
		21	CAMC	CAMC	MD1					
		23	TCH	-	-					
		24	TP0	TP0	-					
		25	TP1	TP1	-					
		26	OVR	OVR	-					
		27	TSTP	TSTP	-					
		29	CIO	CIO	C^{2}					
		2A	CI1	CI1	S					
		2B	DOG	DOG	SIG					
		2C	SPD1	-	-					
		2D	SPD2	-	-					
		2E	SPD3	-	\square^{-}					
		2F	SPD4		\square^{\square}					
		30	$\mathrm{Sl}^{\text {r }}$	LPS	T					
		31	Cl 2	CI2	RT					
		32	-	,	RTCDP					
		34	-	PI1	OV0					
		35	-	PI2	OV1					
		36	${ }^{-}$	PI3	OV2					
		37	Cl3	Cl3	OV3					
		38	DI0	DI0	DI0					
		39	DI1	DI1	DI1					
		3A	DI2	DI2	DI2					
		3B	DI3	DI3	DI3					
		3C	DI4	DI4	DI4					
		3D	DI5	DI5	DI5					
		3E	DI6	DI6	DI6					
		3F	DI7	DI7	DI7					
		Note. CP: Positioning mode (point table method) BCD: Positioning mode (point table method in the BCD input positioning operation) CL: Positioning mode (program method) PS: Positioning mode (indexer method) The diagonal lines indicate manufacturer settings. Never change the setting.								

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				录	J	の
Po03 *ODI2 MR-D01 input device selection 2	Any input device can be assigned to the CN10-27 pin and CN10-28 pin.					
	- - \times x	CN10-27 selection Select an input signal function of the CN10-27 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	05h	\bigcirc	\bigcirc	\bigcirc
	x ${ }_{\text {_ }}$	CN10-28 selection Select an input signal function of the CN10-28 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	09h	\bigcirc	\bigcirc	\bigcirc
Po04 *ODI3 MR-D01 input device selection 3	Any input device can be assigned to the CN10-29 pin and CN10-30 pin.					
	-_xx	CN10-28 selection Select an input signal function of the CN10-28 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	24h	O	O	\bigcirc
	x x^{\prime}	CN10-30 selection Select an input signal function of the CN10-30 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	25h	\bigcirc	\bigcirc	\bigcirc
Po05 *ODI4 MR-D01 input device selection 4	Any input device can be assigned to the CN10-31 pin and CN10-32 pin.					
	--xx	CN10-31 selection Select an input signal function of the CN10-31 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	26h	\bigcirc	\bigcirc	\bigcirc
	X ${ }_{\text {- }}$	CN10-32 selection Select an input signal function of the CN10-32 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	20h	O	O	\bigcirc
Po06 *ODI5 MR-D01 input device selection 5	Any input device can be assigned to the CN10-33 pin and CN10-34 pin.					
	--xx	CN10-33 selection Select an input signal function of the CN10-33 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	27h	O	\bigcirc	\bigcirc
	x x^{\prime}	CN10-34 selection Select an input signal function of the CN10-34 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	04h	\bigcirc	\bigcirc	\bigcirc
Po07 *ODI6 MR-D01 input device selection 6	Any input device can be assigned to the CN10-35 pin and CN10-36 pin.					
	--xx	CN10-35 selection Select an input signal function of the CN10-35 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	07h	\bigcirc	\bigcirc	\bigcirc
	x $\mathrm{x}_{\text {- }}$	CN10-36 selection Select an input signal function of the CN10-36 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	08h	\bigcirc	\bigcirc	\bigcirc

7. PARAMETERS

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				答	-	の
Po08 *ODO1 MR-D01 output device selection 1	Any output device can be assigned to the CN10-46 pin and CN10-47 pin.					
	-_x x	CN10-46 selection Select an output signal function of the CN10-46 pin. Refer to table 7.15 for settings. This parameter setting is available with servo amplifiers with software version B7 or later.	26h	O	\bigcirc	\bigcirc
	X ${ }_{\text {- }}$	CN10-47 selection Select an output signal function of the CN10-47 pin. Refer to table 7.15 for settings. This parameter setting is available with servo amplifiers with software version B7 or later.	27h	\bigcirc	\bigcirc	\bigcirc

No./ symbol/name	$\begin{gathered} \begin{array}{c} \text { Setting } \\ \text { digit } \end{array} \end{gathered}$	Function				$\begin{aligned} & \text { Initial } \\ & \text { value } \\ & \text { [unit] } \end{aligned}$	Control mode			
						(1)	\checkmark	®		
Po08 *ODO1 MR-D01 output device selection 1	Table 7.15 Selectable output devices									
		$\begin{array}{\|l} \hline \begin{array}{l} \text { Setting } \\ \text { value } \end{array} \end{array}$	Output device (Note)							
			CP/BCD	CL	PS					
		00	Always off	Always off	Always off					
		02	RD	RD	RD					
		03	ALM	ALM	ALM					
		04	INP	INP	INP					
		05	MBR	MBR	MBR					
		06	DB	DB	DB					
		07	TLC	TLC	TLC					
		08	WNG	WNG	WNG					
		09	BWNG	BWNG	BWNG					
		0A	SA	SA	Always off					
		0 B	Always off	Always off	Always off					
		0 C	ZSP	ZSP	ZSP					
		OD	MTTR	MTTR	MTTR					
		0 F	CDPS	CDPS	CDPS					
		10	CDLS	CDLS	CDLS					
		11	ABSV	ABSV	ABSV					
		1F	CPCC	CPCC	,					
		23	CPO	CPO	CPO					
		24	ZP	ZP	ZP					
		25	POT	POT	Always off					
		26	PUS	PUS	Always off					
		27	MEND	MEND	MEND					
		29	CLTS	CLTS	-					
		2B	CLTSM	CLTSM	S					
		2 C	PED	PED	\bigcirc					
		2D	\bigcirc	SOUT	\bigcirc					
		2 E	-	OUT1	\bigcirc					
		2 F	-	OUT2	-					
		30	\cdots	OUT3	\bigcirc					
		31	ALMWNG	ALMWNG	ALMWNG					
		32	BW9F	BW9F	BW9F					
		33	MSDH	MSDH	-					
		34	MSDL	MSDL	T					
		37	CAMS	CAMS	S					
		38	PT0	-	PS0					
		39	PT1	-	PS1					
		3 A	PT2	-	PS2					
		3B	PT3	\bigcirc	PS3					
		3 C	PT4	-	PS4					
		3 D	PT5	\bigcirc	PS5					
		3 E	PT6	-	PS6					
		3 F	PT7	\cdots	PS7					
		Note. CP: Positioning mode (point table method) BCD: Positioning mode (point table method in the BCD input positioning operation) CL: Positioning mode (program method) PS: Positioning mode (indexer method) The diagonal lines indicate manufacturer settings. Never change the setting.								

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O ¢ ¢	-	の
Po09 *ODO9 MR-D01 output device selection 2	Any output device can be assigned to the CN10-48 pin and CN10-49 pin.					
	-_xx	CN10-48 selection Select an output signal function of the CN10-48 pin. Refer to table 7.15 in [Pr. Po08] for settings. This parameter setting is available with servo amplifiers with software version B7 or later.	23h	\bigcirc	\bigcirc	\bigcirc
	x $\mathrm{x}_{\text {- }}$	CN10-49 selection Select an output signal function of the CN10-49 pin. Refer to table 7.15 in [Pr. Po08] for settings. This parameter setting is available with servo amplifiers with software version B7 or later.	04h	\bigcirc	\bigcirc	\bigcirc
Po10 *OOP1 Function selection O-1	Set the MR-D01 input device selection, select whether to enable or disable position data input signs, and set a data establishment condition.					
	---x	MR-D01 DI0 to DI14 input signal device selection 0: Disabled 1: Point table: 255 points 2: BCD 3 digits $\times 2$ inputs This parameter setting is available with servo amplifiers with software version B7 or later.	1h	\bigcirc	\bigcirc	\bigcirc
	$=_{-} x^{\prime}$	For manufacturer setting	Oh			
	$\chi_{-} x_{--}$	MR-D01 position data input sign +/- 0: Disabled 1: Enabled This parameter setting is available with servo amplifiers with software version B7 or later.	Oh	\bigcirc	\bigcirc	\bigcirc
	x_{--}	MR-D01 data establishment condition 0: Strobe signal enabled (when the PLC is used) 2: 3.55 ms data matching time (Strobe signal disabled) This parameter setting is available with servo amplifiers with software version B7 or later.	2h	\bigcirc	\bigcirc	\bigcirc
Po11 *OOP2 Function selection O-2	Select the input devices of the override input and torque limit.					
	---x	For manufacturer setting	Oh	>	\triangle	
	$-_{-x^{\prime}}$	Override input CN1-2/CN20-2 switching selection 0 : CN1-2 pin enabled 1: CN20-2 pin enabled Setting "1" when no MR-D01 has been connected will trigger [AL. 37].	Oh	\bigcirc	\bigcirc	\bigcirc
	- ${ }^{\text {_ }}$ -	Torque limit CN1-27/CN20-12 switching selection 0: CN1-27 pin enabled 1: CN20-12 pin enabled Setting "1" when no MR-D01 has been connected will trigger [AL. 37].	Oh	\bigcirc	\bigcirc	\bigcirc
	$\mathrm{x}_{\text {¢ }}$ - ${ }^{\text {a }}$ For manufacturer setting		Oh	\checkmark		\checkmark
Po12 *OOP3 Function selection O-3	Select an alarm code output setting and an M code output setting.					
	---x	MR-D01 alarm code output 0: Disabled 1: Enabled Selecting "1" in this digit will output an alarm code when an alarm occurs. This parameter setting is available with servo amplifiers with software version B7 or later.	Oh	\bigcirc	\bigcirc	\bigcirc
	-- ${ }^{\text {- }}$	```M code output selection 0 : Disabled 1: Enabled Selecting "1" in this digit will enable you to check outputs according to M codes (0 to 99) set with point tables by using output devices of the communication function.```	Oh	\bigcirc		
	- ${ }_{\text {x }}$	For manufacturer setting	Oh	$\triangle>$		
			Oh			

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				足	Ј	の
Po14 OMOD2 MR-D01 analog monitor 2 output selection	Set a signal to output to Analog monitor 2.					
	-_xx	Analog monitor 2 output selection Select a signal to output to MO2 (Analog monitor 2). Refer to [Pr. Po13] for settings. This parameter setting is available with servo amplifiers with software version B7 or later.	00h	\bigcirc	\bigcirc	\bigcirc
	- ${ }^{\text {x }}$	For manufacturer setting	Oh			
	$\mathrm{x}_{\text {- }--}$		Oh			
Po15 OMO1 MR-D01 analog monitor 1 offset		This is used to set the offset voltage of MO1 (Analog monitor 1). This parameter setting is available with servo amplifiers with software version B7 or later. Setting range: -9999 to 9999	$\begin{gathered} 0 \\ {[\mathrm{mV}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
Po16 OMO2 MR-D01 analog monitor 2 offset		This is used to set the offset voltage of MO2 (Analog monitor 2). This parameter setting is available with servo amplifiers with software version B7 or later. Setting range: -9999 to 9999	$\begin{gathered} 0 \\ {[\mathrm{mV}]} \end{gathered}$	O	O	\bigcirc
Po21 OVCO MR-D01 override offset		This is used to set the offset voltage of the override. This parameter setting is available with servo amplifiers with software version B7 or later. Setting range: -9999 to 9999	$\begin{gathered} 0 \\ {[\mathrm{mV}]} \end{gathered}$	O	\bigcirc	\bigcirc
Po22 OTLO MR-D01 Analog torque limit offset		This is used to set the offset voltage of the analog torque limit. This parameter setting is available with servo amplifiers with software version B7 or later. Setting range: -9999 to 9999	$\begin{gathered} 0 \\ {[\mathrm{mV}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
Po27 *ODI7 MR-D01 input device selection 7	Any input device can be assigned to the CN10-18 pin and CN10-19 pin.					
	- - x x	CN10-18 selection Select an input signal function of the CN10-18 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	2Ch	\bigcirc	\bigcirc	\bigcirc
	x $\mathrm{X}_{\text {_ }}$	CN10-19 selection Select an input signal function of the CN10-19 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	2Dh	\bigcirc	\bigcirc	\bigcirc
Po28 *ODI8 MR-D01 input device selection 8	Any input device can be assigned to the CN10-20 pin.					
	- - xx	CN10-20 selection Select an input signal function of the CN10-20 pin. Refer to table 7.14 in [Pr. Po02] for setting values. This parameter setting is available with servo amplifiers with software version B7 or later.	2Eh	\bigcirc	\bigcirc	\bigcirc
	x ${ }_{\text {_- }}$	For manufacturer setting	00h			

7.2.9 Positioning control parameters ([Pr. PT__])

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				足	-	の
PT01 *CTY Command mode selection	$--{ }^{\text {a }}$	Positioning command method selection $0:$ Absolute value command method 1: Incremental value command method	Oh	\bigcirc	\bigcirc	
	x	For manufacturer setting	Oh			
	${ }_{-}{ }^{\text {x }}$	Position data unit 0: mm 1: inch 2: degree 3: pulse For the simple cam function, set a command unit of the cam axis one cycle input during the cam control. The setting unit is applied to the cam axis one cycle length setting and the cam axis one cycle current value.	Oh	\bigcirc	\bigcirc	
	$\mathrm{x}_{\text {_- }}$	RS-422 communication - Previous model equivalent selection 0: Disabled (MR-J4 standard) 1: Enabled (equivalent to MR-J3-T) 2: Enabled (equivalent to MR-J2S-CP) 3: Enabled (equivalent to MR-J2S-CL) For the communication command of the Mitsubishi general-purpose AC servo protocol, the status display and read/write commands of input/output devices can be used with the data Nos. and bit assignment of the same as previous models. When this digit is "1" or "2", MR Configurator2 cannot be used with the USB communication.	Oh	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { PT02 } \\ & \text { *TOP1 } \\ & \text { Function } \\ & \text { selection T-1 } \end{aligned}$	---x	Follow-up of SON (Servo-on) off/EM2 (Forced stop 2) off with absolute value command method in incremental system 0: Disabled (Home position is erased at servo-off or EM2 off.) 1: Enabled (Home position is not erased even if servo-off, EM2 off, or alarm occurrence which can be canceled with reset. The operation can be continued.)	Oh	\bigcirc	\bigcirc	\bigcirc
	- x	For manufacturer setting	Oh			
	$\mathrm{X}_{\text {- }}$		Oh			
	$\mathrm{X}_{\text {- }}$	Point table/program writing inhibit 0: Allow 1: Inhibit	Oh	\bigcirc	\bigcirc	\bigcirc
PT03 *FTY Feeding function selection	$--^{x}$	$\begin{aligned} & \text { Feed length multiplication [STM] } \\ & 0: \times 1 \\ & 1: \times 10 \\ & 2: \times 100 \\ & 3: \times 1000 \\ & \text { This digit will be disabled when [degree] or [pulse] of "Position data unit" is set in } \\ & \text { [Pr. PT01]. } \\ & \hline \end{aligned}$	Oh	\bigcirc	\bigcirc	
	$-_{-}{ }^{-}$	Manual pulse generator multiplication $\begin{aligned} & 0: \times 1 \\ & 1: \times 10 \\ & 2: \times 100 \end{aligned}$	Oh	\bigcirc	\bigcirc	
	${ }_{-}{ }^{\text {- }}$	Shortest rotation selection per degree 0 : Rotation direction specifying 1: Shortest rotation This parameter setting is available with servo amplifiers with software version B7 or later.	Oh	\bigcirc	\bigcirc	
	$\mathrm{X}_{\text {_- }}$	For manufacturer setting	Oh			

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				$\begin{array}{\|l\|} \hline 0 \\ \text { O} \\ \text { m } \\ 0 \end{array}$	Ј	の
PT04 *ZTY Home position return type	_-_x	Home position return method 0 : Dog type (rear end detection, Z-phase reference)/torque limit changing dog type 1: Count type (front end detection, Z-phase reference) (Note 1) 2: Data set type/torque limit changing data set type 3: Stopper type (Note 1) 4: Home position ignorance (servo-on position as home position) (Note 1) 5: Dog type (rear end detection, rear end reference) (Note 1) 6: Count type (front end detection, front end reference) (Note 1) 7: Dog cradle type (Note 1) 8: Dog type (front end detection, Z-phase reference) (Note 1, 2) 9: Dog type (front end detection, front end reference) (Note 1) A: Dogless type (Z-phase reference) (Note 1, 2) Note 1. Setting "1" and "3" to "A" will trigger [AL. 37 Parameter error] for the indexer method. 2. This type is available when a linear encoder or a DD motor is used with servo amplifiers with software version B7 or later. This type is not available when a linear encoder or a DD motor is not used with servo amplifiers with software version B6 or earlier. Setting this type will trigger [AL. 37 Parameter error].	Oh	\bigcirc	\bigcirc	\bigcirc
	-- ${ }^{\text {_ }}$	Home position return direction 0 : Address increasing direction 1: Address decreasing direction d Setting "2" or more to this digit will be recognized as "1: Address decreasing direction".	1h	\bigcirc	O	O
	- ${ }^{\text {- - }}$	Home position shift distance multiplication Set a multiplication of [Pr. PT07 Home position shift distance]. $\begin{aligned} & 0: \times 1 \\ & 1: \times 10 \\ & 2: \times 100 \\ & 3: \times 1000 \end{aligned}$ " 0 " to " 3 " can be used for the indexer method. When [degree] of "Position data unit" is set in [Pr. PT01] in the point table method or program method, "0" and "1" can be used. ("2" or more will be recognized as "1".)	Oh	\bigcirc	0	0
		For manufacturer setting	Oh			
PT05 ZRF Home position return speed		Set a (linear) servo motor speed at home position return. Setting range: 0 to permissible instantaneous speed	$\begin{gathered} 100 \\ {[\mathrm{r} / \mathrm{min}] /} \\ {[\mathrm{mm} / \mathrm{s}]} \end{gathered}$	\bigcirc	\bigcirc	\bigcirc
PT06 CRF Creep speed		Set a creep speed after proximity dog at home position return. Setting range: 0 to permissible instantaneous speed	10 $[\mathrm{r} / \mathrm{min}] /$ $[\mathrm{mm} / \mathrm{s}]$ [mm/s]	\bigcirc	O	0

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode				
				O 0 0 0 0	U	の		
$\begin{aligned} & \hline \text { PT07 } \\ & \text { ZST } \\ & \text { Home } \\ & \text { position shift } \\ & \text { distance } \end{aligned}$		Set a shift distance from the Z-phase pulse detection position in the encoder. The unit will be as follows depending on the positioning mode. - Point table method or program method It will be change to $[\mu \mathrm{m}], 10^{-4}$ [inch], 10^{-3} [degree], or [pulse] with [Pr. PT01]. - Indexer method It will be command unit [pulse]. (unit of a load-side rotation expressed by the number of encoder resolution pulses) Refer to the Function column of [Pr. PA10] for the command unit [pulse]. Additionally, when "Home position shift distance multiplication" is set in [Pr. PT04], it is used with " $\times 10^{n "}$. Setting range: 0 to 65535	0 Refer to Function column for unit.	\bigcirc	\bigcirc	\bigcirc		
PT08 *ZPS Home position return position data		Set a current position at home position return completion. The unit will be changed to $10^{\text {STM }}[\mu \mathrm{m}], 10^{-(\mathrm{STM}-4)}$ [inch], 10^{-3} [degree], or [pulse] with the setting of [Pr. PT01]. Additionally, when the following parameters are changed, the home position return position data will be changed. Execute the home position return again. - "Position data unit" in [Pr. PT01] - "Feed length multiplication (STM)" in [Pr. PT03] - "Home position return type" in [Pr. PT04] Setting range: - 32768 to 32767	0 Refer to Function column for unit.	\bigcirc	\bigcirc			
$\begin{array}{\|l} \hline \text { PT09 } \\ \text { DCT } \\ \text { Travel } \\ \text { distance after } \\ \text { proximity dog } \end{array}$		Set a travel distance after proximity dog at home position return for the count type, dog type rear end reference, count type front end reference, and dog type front end reference. The unit will be changed to $10^{\text {STM }}\left[\mu \mathrm{m}\right.$], $10^{-(\mathrm{STM}-4)}$ [inch], 10^{-3} [degree], or [pulse] with the setting of [Pr. PT01]. Setting range: 0 to 65535	1000 Refer to Function column for unit.	O	\bigcirc	$\}$		
PT10 ZTM Stopper type home position return stopper time		Set time from a moving part touches the stopper and torques reaches to the torque limit of [Pr. PT10 Stopper type home position return - Torque limit value] to a home position set for the stopper type home position return. Setting " 0 " to " 4 " will be the same as setting " 5 ". Setting range: 0 to 1000	$\begin{gathered} 100 \\ {[\mathrm{~ms}]} \end{gathered}$	\bigcirc	\bigcirc	$\overline{ }$		
PT11 ZTT Stopper type home position return torque limit value		Set a torque limit value with [\%] to the maximum torque at stopper type home position return. Setting " 0.0 " will be the same as setting "1.0". Setting range: 0 to 1000	$\begin{aligned} & 15.0 \\ & {[\%]} \end{aligned}$	\bigcirc	\bigcirc	$\$ \hlinePT12 CRP Rough match output range& &Set a range of the command remaining distance which outputs CPO (Rough match). The unit will be as follows depending on the positioning mode. - Point table method or program method The unit will be changed to $10^{\text {STM }}\left[\mu \mathrm{m}\right.$], $10^{-(\mathrm{STM}-4)}$ [inch], 10^{-3} [degree], or [pulse] with the setting of [Pr. PT01]. - Indexer method It will be command unit [pulse]. (unit of a load-side rotation expressed by the number of encoder resolution pulses) Refer to the Function column of [Pr. PA10] for the command unit [pulse]. Setting range: 0 to 65535&0 Refer to Function column for unit. & \bigcirc	\bigcirc	\bigcirc
$\begin{array}{\|l\|} \hline \text { PT13 } \\ \text { JOG } \\ \text { Jog speed } \\ \hline \end{array}$	\}	Set a JOG speed. Setting range: 0 to permissible instantaneous speed	$\begin{gathered} 100 \\ {[\mathrm{r} / \mathrm{min}] /} \\ {[\mathrm{mm} / \mathrm{s}]} \end{gathered}$	O	\bigcirc	\bigcirc		

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O 0 mo 0	Ј	¢
PT14 *BKC Backlash compensation		Set a backlash compensation for reversing command direction. This parameter compensates backlash pulses against the home position return direction. For the home position ignorance (servo-on position as home position), this turns on SON (Servo-on) and decides a home position, and compensates backlash pulses against the first rotation direction. The unit [pulse] will be the command pulse per revolution. Setting range: 0 to 65535	$\begin{gathered} 0 \\ \text { [pulse] } \end{gathered}$	\bigcirc	\bigcirc	0
PT15 LMPL Software limit + (third least significant digit) PT16 LMPH Software limit + (third most significant digit)		Set an address increasing side of the software stroke limit. Upper and lower are a set. Setting address: The stop method depends on "Stop method selection at software limit detection" of [Pr. PD30]. The initial value is "Quick stop (home position erased)". Setting a same value with "Software limit -" will disable the software stroke limit. (Refer to section 7.4.) Set a same sign for [Pr. PT15] and [Pr. PT16]. A different sign will be recognized as minus sign data. When changing the direction to address decreasing, change it from the - side of the software limit ([Pr. PT17] and [Pr. PT18]). An incorrect order of the setting will trigger [AL. 37]. Therefore, cycling power may be required after [Pr. PT15] to [Pr. PT18] are all set. The unit will be changed to $10^{\mathrm{STM}}\left[\mu \mathrm{m}\right.$], $10^{-(\mathrm{STM}-4)}$ [inch], 10^{-3} [degree], or [pulse] with the setting of [Pr. PT01]. Setting range: -999999 to 999999	0 Refer to Function column for unit.	\bigcirc	0	
PT17 LMNL Software limit (third least significant digit) PT18 LMNH Software limit (third most significant digit)		Set an address decreasing side of the software stroke limit. Upper and lower are a set. The stop method depends on "Stop method selection at software limit detection" of [Pr. PD30]. The initial value is "Quick stop (home position erased)". Setting a same value with "Software limit +" will disable the software stroke limit. (Refer to section 7.4.) Set a same sign for [Pr. PT17] and [Pr. PT18]. A different sign will be recognized as minus sign data. When changing the direction to the address increasing direction, change it from the + side of the software limit ([Pr. PT15] and [Pr. PT16]). An incorrect order of the setting will trigger [AL. 37]. Therefore, cycling power may be required after [Pr. PT15] to [Pr. PT18] are all set. The unit will be changed to $10^{\mathrm{STM}}\left[\mu \mathrm{m}\right.$], $10^{-(\mathrm{STM}-4)}$ [inch], 10^{-3} [degree], or [pulse] with the setting of [Pr. PT01]. Setting range: -999999 to 999999	0 Refer to Function column for unit.	O	0	

No．／ symbol／name	Setting digit	Function	Initial value ［unit］	Control mode		
				O－	Ј	の
PT19 ＊LPPL Position range output address＋ （third least significant digit） PT20 ＊LPPH Position range output address＋ （third most significant digit）		Set an address increasing side of the position range output address． Upper and lower are a set．Set a range which POT（Position range）turns on with ［Pr．PT19］to［Pr．PT22］． Setting address： The unit will be changed to $10^{\text {STM }}\left[\mu \mathrm{m}\right.$ ］， $10^{-(\mathrm{STM}-4)}$［inch］， 10^{-3}［degree］，or［pulse］with the setting of［Pr．PT01］． Set a same sign for［Pr．PT19］and［Pr．PT20］．Setting a different sign will trigger ［AL． 37 Parameter error］． When changing a setting，always set the third least significant digit before setting the third most significant digit． When changing the direction to address decreasing，change it from the－side of the position range output address（［Pr．PT21］and［Pr．PT22］）．An incorrect order of the setting will trigger［AL．37］．Therefore，cycling power may be required after［Pr．PT19］ to［Pr．PT22］are all set． Setting range：－999999 to 999999	0 Refer to Function column for unit．	\bigcirc	\bigcirc	
PT21 ＊LNPL Position range output address－ （third least significant digit） PT22 ＊LNPH Position range output address－ （third most significant digit）		Set an address decreasing side of the position range output address． Upper and lower are a set．Set a range which POT（Position range）turns on with ［Pr．PT19］to［Pr．PT22］． Setting address： The unit will be changed to $10^{\text {STM }}\left[\mu \mathrm{m}\right.$ ］， $10^{-(\mathrm{STM}-4)}$［inch］， 10^{-3}［degree］，or［pulse］with the setting of［Pr．PT01］． Set a same sign for［Pr．PT21］and［Pr．PT22］．Setting a different sign will trigger ［AL． 37 Parameter error］． When changing a setting，always set the third least significant digit before setting the third most significant digit． When changing the direction to address increasing，change it from the＋side of the position range output address（［Pr．PT19］and［Pr．PT20］）．An incorrect order of the setting will trigger［AL．37］．Therefore，cycling power may be required after［Pr．PT19］ to［Pr．PT22］are all set． Setting range：－999999 to 999999	0 Refer to Function column for unit．	\bigcirc	\bigcirc	
PT23 OUT1 OUT1 output setting time		Set an output time for when OUT1（Program output 1）is turned on with the OUTON command． Setting＂0＂will keep on－state．To turn it off，use the OUTOF command． Setting range： 0 to 20000	$\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$	人	\bigcirc	$\overline{ }$
PT24 OUT2 OUT2 output setting time		Set an output time for when OUT2（Program output 2）is turned on with the OUTON command． Setting＂0＂will keep on－state．To turn it off，use the OUTOF command． Setting range： 0 to 20000	$\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$	人	\bigcirc	人
PT25 OUT3 OUT3 output setting time		Set an output time for when OUT3（Program output 3）is turned on with the OUTON command． Setting＂0＂will keep on－state．To turn it off，use the OUTOF command． Setting range： 0 to 20000	$\begin{gathered} 0 \\ {[\mathrm{~ms}]} \end{gathered}$	人	\bigcirc	人

No./ symbol/name	Setting digit	Function	Initial value [unit]	Control mode		
				O ¢ ¢ 0	Ј	の
PT30 MSTL Mark sensor stop travel distance (lower three digits) PT31 MSTH Mark sensor stop travel distance (upper three digits)		Set a mark sensor stop travel distance. Upper and lower are a set. When MSD (Mark detection) is on, the remaining distance will be changed to the travel distance that is set with this parameter. Setting address: When changing the setting, be sure to set the lower three digits first. Then, set the upper three digits. An incorrect order of the setting will trigger [AL. 37]. Therefore, cycling power may be required after [Pr. PT30] to [Pr. PT31] are all set. The unit will be changed to $10^{\text {STM }}\left[\mu \mathrm{m}\right.$], $10^{-(\mathrm{STM}-4)}$ [inch], 10^{-3} [degree], or [pulse] with the setting of [Pr. PT01]. This parameter setting is available with servo amplifiers with software version B7 or later. Setting range: 0 to 999	0 Refer to Function column for unit.	\bigcirc	\bigcirc	
PT34 *PDEF Point table/program default		Use this parameter when initializing a point table and program. A point table and program will be the following status by initializing. Point table: All "0" Program: Erased Initialize them with the following procedures. 1) Set " 5001 h " to this parameter. 2) Cycle the power of the servo amplifier. After the servo amplifier power is on, it takes about 20 s to complete the initialization. "dEF" will be displayed on the display (five-digit, seven-segment LED) during the initialization. After the initialization, the setting of this parameter will be "0000h" automatically.	0000h	\bigcirc	\bigcirc	
PT38 *TOP7 Function selection T-7	-	For manufacturer setting	Oh			\triangle
	-- ${ }^{\text {x }}$	Digital override selection 0: Override function is disabled with DI input 1: Override function is enabled with DI input	Oh			\bigcirc
	$\frac{x_{--}}{x_{-}}$	For manufacturer setting	Oh			
		Backlash compensation direction selection at data set type home position return 0 : Executes backlash compensation assuming a command to the CW rotation direction before home position return. 1: Executes backlash compensation assuming a command to the CCW rotation direction before home position return. When setting this digit, execute a home position return again.	Oh	$\overline{ }$	\rangle	\bigcirc
PT39 INT Torque limit delay time		Set delay time from outputting INP (In-position) to enabling [Pr. PC35 Internal torque limit 2/internal thrust limit 2]. Setting range: 0 to 1000	$\begin{gathered} 100 \\ {[\mathrm{~ms}]} \end{gathered}$		人	\bigcirc

No./ symbol/name	Setting digit	Function					Initial value [unit]	Control mode			
							O 0 0 0 0	Ј	の		
$\begin{aligned} & \hline \text { PT40 } \\ & \text { *SZS } \end{aligned}$ Station home position shift distance		Set a shift distance of the station home position with encoder pulse unit at home position return. Setting this parameter enables to shift the station home position (station No. 0) to the position for home position return. The following shows cautions for the setting. - The setting of the station home position shift distance is disabled at home position return. Cycling the power will enable the setting. - When a home position shift distance is longer than the in-position range, INP (In-position) will not be on regardless of cycle of the power after home position return. Setting range: -32000 to 32000						$\begin{gathered} 0 \\ \text { [pulse] } \end{gathered}$			\bigcirc
PT41 ORP Home position return inhibit function selection	---x	Home position return inhibit selection 0: Disabled (home position return allowed) 1: Enabled (home position return inhibited) Selecting "1" for this digit will disable the home position return regardless of turning on ST1 in the home position return mode.					Oh	\bigcirc	\bigcirc	\bigcirc	
	$\sim_{-} \mathrm{x}_{-}$	For manufacturer setting					Oh				
	$\mathrm{X}_{\text {_ }}$						Oh				
	$\mathrm{x}_{\text {_- }}$						Oh				
PT42 *OVM Digital override minimum multiplication		Set a minimum speed for when the digital override function is enabled. When you use the digital override function, multiplication can be set with [Pr. PT42] and [Pr. PT43]. Set this and [Pr. PT43] at a time. Refer to the following table for how to calculate multiplication value. Setting "0" will be recognized as "1". Setting range: 0 to 100					$\begin{gathered} 0 \\ {[\%]} \end{gathered}$	\rangle	\rangle	\bigcirc	
			Note)	devic		Multiplication [\%]					
		OV3	OV2	OV1	OVO						
		0	0	0	0	Fixed to 100					
		0	0	0	1	[Pr. PT42]					
		0	0	1	0	[Pr. PT42] + [Pr. PT43] $\times 1$					
		0	0	1	1	[Pr. PT42] + [Pr. PT43] $\times 2$					
		0	1	0	0	[Pr. PT42] + [Pr. PT43] $\times 3$					
		0	1	0	1	[Pr. PT42] + [Pr. PT43] $\times 4$					
		0	1	1	0	[Pr. PT42] + [Pr. PT43] $\times 5$					
		0	1	1	1	[Pr. PT42] + [Pr. PT43] $\times 6$					
		1	0	0	0	[Pr. PT42] + [Pr. PT43] $\times 7$					
		1	0	0	1	[Pr. PT42] + [Pr. PT43] $\times 8$					
		1	0	1	0	[Pr. PT42] + [Pr. PT43] $\times 9$					
		1	0	1	1	[Pr. PT42] + [Pr. PT43] $\times 10$					
		1	1	0	0	[Pr. PT42] + [Pr. PT43] $\times 11$					
		1	1	0	1	[Pr. PT42] + [Pr. PT43] $\times 12$					
		1	1	1	0	[Pr. PT42] + [Pr. PT43] $\times 13$					
		1	1	1	1	Fixed to 0					
		Note. 0 1:									
PT43 *OVS Digital override pitch width		Set an overrid When you us and [Pr. PT43] Refer to the Setting "0" will	tch wid digita et this of $[P r$. recog	whe rride Pr. P] for as "1	digital n, mu a tim s.	de function is enabled. ation can be set with [Pr. PT42]	$\begin{gathered} 0 \\ {[\%]} \end{gathered}$	$\$ & \bigcirc	\bigcirc		

7. PARAMETERS

7.3 How to set the electronic gear

7.3.1 Electronic gear settings in the point table method and program method
(1) Setting [mm], [inch], or [pulse] with "Position data unit" of [Pr. PT01].

Adjust [Pr. PA06] and [Pr. PA07] so that the servo motor setting matches with the travel distance of the machine.

Pt: Servo motor encoder resolution: 4194304 [pulse/rev]
Δ S: Travel distance per servo motor revolution [mm/rev]/[inch/rev]/[pulse/rev] $\mathrm{CMX} / \mathrm{CDV}=\mathrm{Pt} / \Delta \mathrm{S}$

Note. For MR-J4-03A6-RJ servo amplifiers, "2 _ _ " or "3 _ _ " cannot be set to [Pr. PA21].

Set the electronic gear within the following range. Setting out of the range will trigger [AL. 37 Parameter error].

Pr. PA21	Electronic gear setting range
$0_{_-_}$	$1 / 865<\mathrm{CMX} / \mathrm{CDV}<271471$
$2 _\ldots-$	$1 / 13825<\mathrm{CMX} / \mathrm{CDV}<16967$
$3^{2} _-$	$1 / 27649<\mathrm{CMX} / \mathrm{CDV}<8484$

The following setting example explains how to calculate the electronic gear.

POINT

To calculate the electronic gear, the following specification symbols are required.
Pb : Ball screw lead [mm]
1/n: Reduction ratio
Pt: Servo motor encoder resolution [pulse/rev]
$\Delta \mathrm{S}$: Travel distance per servo motor revolution [$\mathrm{mm} / \mathrm{rev}$]
(a) Setting example of a ball screw

Machine specifications

Ball screw lead $\mathrm{Pb}=10$ [mm]
Reduction ratio: $1 / n=Z_{1} / Z_{2}=1 / 2$
Z_{1} : Number of gear teeth on servo motor side
Z_{2} : Number of gear teeth on load gear

Servo motor encoder resolution 4194304 [pulse/rev]

7. PARAMETERS

Servo motor encoder resolution $\mathrm{Pt}_{\mathrm{t}}=4194304$ [pulse/rev]
$\frac{\mathrm{CMX}}{\mathrm{CDV}}=\frac{\mathrm{Pt}}{\Delta \mathrm{S}}=\frac{\mathrm{Pt}}{\mathrm{n} \cdot \mathrm{Pb} \cdot \alpha(\text { Note })}=\frac{4194304}{1 / 2 \cdot 10 \cdot 1000}=\frac{4194304}{5000}=\frac{524288}{625}$

Note. Because the command unit is "mm", $\alpha=1000$ is set. When the unit is "inch", convert the setting into $\alpha=10000$. When the unit is "pulse", convert the setting into $\alpha=1$.

Therefore, set CMX $=524288$ and CDV $=625$.
(b) Setting example of a conveyor

Machine specifications

Pulley diameter: $\mathrm{r}=160$ [mm]
Reduction ratio: $1 / n=Z_{1} / Z_{2}=1 / 3$
Z_{1} : Number of gear teeth on servo motor side
Z_{2} : Number of gear teeth on load gear

Servo motor encoder resolution $\mathrm{P}_{\mathrm{t}}=4194304$ [pulse/rev]

$$
\frac{\mathrm{CMX}}{\mathrm{CDV}}=\frac{P_{\mathrm{t}}}{\Delta \mathrm{~S}}=\frac{\mathrm{Pt}}{\mathrm{n} \cdot r \cdot \pi \cdot \alpha(\text { Note })}=\frac{4194304}{1 / 3 \cdot 160 \cdot \pi \cdot 1000}=\frac{4194304}{167551.61} \approx \frac{524288}{20944}
$$

Note. Because the command unit is "mm", $\alpha=1000$ is set. When the unit is "inch", convert the setting into $\alpha=10000$. When the unit is "pulse", convert the setting into $\alpha=1$.

Reduce CMX and CDV to within the setting range or lower and round off each value to the closest whole number.
Therefore, set CMX = 524288 and CDV $=20944$.
(2) Setting [degree] with "Position data unit" of [Pr. PT01].

Set the number of gear teeth on machine side to [Pr. PA06] and number of gear teeth on servo motor side to [Pr. PA07].

Note. For MR-J4-03A6-RJ servo amplifiers, " 2 _ _ " or " 3 _ _ _" cannot be set to [Pr. PA21].

7. PARAMETERS

Set the electronic gear within the following range. Setting out of the range will trigger [AL. 37 Parameter error].
(a) Set values to make numerator and denominator 16384 or lower if the electronic gear (CMX/CDV) is reduced to its lowest terms.
(b) Set values to make numerator and denominator 16777216 or lower if $(\mathrm{CMX} \times \mathrm{Pt}) /(\mathrm{CDV} \times 360000)$ is reduced to its lowest terms.

The following shows a setting example of the electronic gear.
Number of gear teeth on machine side: 25, number of gear teeth on servo motor side: 11
Set $[P r . P A 06]=25$ and $[P r . P A 07]=11$.

Pt (Servo motor resolution): 4194304 pulses/rev
Z1: Number of gear teeth on servo motor side
Z2: Number of gear teeth on machine side
Z1: Z2 = 11:25
7.3.2 Electronic gear setting in the indexer method

Adjust [Pr. PA06] and [Pr. PA07] to align the rotation amount "m" of the servo motor shaft necessary to rotate the load side for " n " times. The following shows a setting example of the electronic gear.
(1) Number of pulley teeth on machine side: 50, number of pulley teeth on servo motor side: 20 Set $[\operatorname{Pr} . \operatorname{PA06]}=50$ and $[\operatorname{Pr} . \mathrm{PA} 07]=20$.

(2) Number of pulley teeth on machine side: 50 , number of pulley teeth on servo motor side: 20 , with geared servo motor of $1 / 9$
Set $[\operatorname{Pr} . \operatorname{PA06}]=450$ and $[\operatorname{Pr} . \operatorname{PA07}]=20$.

7. PARAMETERS

7.4 Software limit

The limit stop with the software limit ([Pr. PT15] to [Pr. PT18]) is the same as the motion of the stroke end. Exceeding a setting range will stop and servo-lock the shaft. This will be enabled at power-on and will be disabled at home position return. Setting a same value to "Software limit +" and "Software limit -" will disable this function. Setting a larger value to "Software limit -" than "Software limit + " will trigger [AL. 37.2 Parameter combination error].

The software limit is disabled in the indexer method.

7.5 Stop method for LSP (Forward rotation stroke end) off or LSN (Reverse rotation stroke end) off

Select a servo motor stop method for when LSP (Forward rotation stroke end) or LSN (Reverse rotation stroke end) is off with the first digit of [Pr. PD30].

Stop method selection for LSP (Forward rotation stroke end) off or LSN (Reverse rotation stroke end) off
0 : Quick stop (home position erased)
1: Slow stop (home position erased)
2: Slow stop (deceleration to a stop by deceleration time constant)
3: Quick stop (stop by clearing remaining distance)

[Pr. PD30] setting	Operation status		Remark
	During rotation at constant speed	During deceleration to a stop	
$\begin{aligned} & -\overline{\text { (initial }} 0 \\ & \text { value) } \end{aligned}$			Erases the droop pulses and stops the motor. Erases the home position. A difference will be generated between command position and current position. Perform a home position return again.
_ _ _ 1			Erases the droop pulse portion and stops the motor. Erases the home position. A difference will be generated between command position and current position. Perform a home position return again.
$\begin{aligned} & \overline{\text { Note }} 1 \text {) } \end{aligned}$			Decelerates to a stop with the deceleration time constant currently selected with the point table or the program. Continues operation for a delay portion of the S-pattern acceleration/decelera tion time constants. Maintains the home position.
$\begin{aligned} & ---3 \\ & (\text { Note } 2) \end{aligned}$			Erases the droop pulse portion and stops the motor. Continues operation for a delay portion of the S-pattern acceleration/decelera tion time constants. Maintains the home position.

Note 1. This will be the same motion as setting "__ 1" to [Pr. PD30] in the indexer method.
2. This will be the same motion as setting "_ _ 0 " to [Pr. PD30] in the indexer method.

7.6 Stop method at software limit detection

Select a stop method of the servo motor for when a software limit ([Pr. PT15] to [Pr. PT18]) is detected with the setting of the third digit in [Pr. PD30]. The software limit limits a command position controlled in the servo amplifier. Therefore, actual stop position will not reach the set position of the software limit. The software limit is disabled in the indexer method.

Stop method selection at software limit detection 0 : Quick stop (home position erased)
1: Slow stop (home position erased)
2: Slow stop (deceleration to a stop by deceleration time constant)
3: Quick stop (stop by clearing remaining distance)

$\begin{aligned} & \text { [Pr. PD30] } \\ & \text { setting } \end{aligned}$	Operation status		Remark
	During rotation at constant speed	During deceleration to a stop	
$\begin{gathered} -0 \\ \text { (initial } \\ \text { value) } \end{gathered}$			Erases the droop pulses and stops the motor. Erases the home position. A difference will be generated between command position and current position. Perform a home position return again.
_ ${ }^{1}$ _-			Erases the droop pulse portion and stops the motor. Erases the home position. A difference will be generated between command position and current position. Perform a home position return again.
_ ${ }^{2}$ _ -			Decelerates to a stop with the deceleration time constant currently selected with the point table or the program. Continues operation for a delay portion of the S-pattern acceleration/decelera tion time constants. Keeps the home position.
\sim^{3}--			Erases the droop pulse portion and stops the motor. Continues operation for a delay portion of the S-pattern acceleration/decelera tion time constants. Keeps the home position.

MEMO

8. TROUBLESHOOTING

> | POINT |
| :--- |
| ORefer to "MELSERVO-J4 Servo Amplifier Instruction Manual (Troubleshooting)" |
| for details of alarms and warnings. |
| OAs soon as an alarm occurs, turn SON (Servo-on) off and interrupt the power. |
| [AL. 37 Parameter error] and warnings (except [AL. FO Tough drive warning]) |
| are not recorded in the alarm history. |

When an error occurs during operation, the corresponding alarm or warning is displayed. When the alarm or the warning is displayed, refer to "MELSERVO-J4 Servo Amplifier Instruction Manual (Troubleshooting)" to remove the failure. When an alarm occurs, ALM will turn off.

8.1 Explanation for the lists

(1) No./Name/Detail No./Detail name

Indicates each No./Name/Detail No./Detail name of alarms or warnings.
(2) Stop method

For the alarms and warnings in which "SD" is written in the stop method column, the servo motor stops with the dynamic brake after forced stop deceleration. For the alarms and warnings in which "DB" or "EDB" is written in the stop method column, the servo motor stops with the dynamic brake without forced stop deceleration.
(3) Alarm deactivation

After its cause has been removed, the alarm can be deactivated in any of the methods marked \circ in the alarm deactivation column. Warnings are automatically canceled after the cause of occurrence is removed. Alarms are deactivated with alarm reset or cycling the power.

Alarm deactivation	Explanation
Alarm reset	1. Turning on RES (Reset) with input device 2. Pushing the "SET" button while the display of the servo amplifier is the current alarm display status
	3. Pushing the "Occurring Alarm Reset" button in the "Alarm Display" window of MR Configurator2
Cycling the power	Turning off the power and on again

(4) Alarm code

To output alarm codes, set [Pr. PD34] to "__ 1 ". Alarm codes are outputted by on/off of bit 0 to bit 2. Warnings ([AL. 90] to [AL. F3]) do not have alarm codes. The alarm codes in the following table will be outputted when they occur. The alarm codes will not be outputted in normal condition.

8. TROUBLESHOOTING

8.2 Alarm list

S	No.	Name	Detail No.	Detail name	Stop method (Note 2, 3)	Alarmdeactivation		Alarm code		
V						Alarm reset	Cycling the power	$\begin{array}{c\|} \hline \text { CN1 } \\ 22 \\ \text { (Bit 2) } \\ \hline \end{array}$	$\begin{gathered} \hline \text { CN1 } \\ 23 \\ \text { (Bit 1) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CN1 } \\ 24 \\ \text { (Bit 0) } \end{array}$
$\left\lvert\, \begin{aligned} & \frac{\varepsilon}{\boxed{K}} \\ & \frac{\pi}{\mathbb{2}} \end{aligned}\right.$	10	Undervoltage	10.1	Voltage drop in the control circuit power	EDB	\bigcirc	\bigcirc	0	1	0
	10	Undervolage	10.2	Voltage drop in the main circuit power	SD	\bigcirc	\bigcirc	0	1	0
	12	Memory error 1 (RAM)	12.1	RAM error 1	DB		\bigcirc	0	0	0
			12.2	RAM error 2	DB	5	\bigcirc			
			12.4	RAM error 4	DB		\bigcirc			
			12.5	RAM error 5	DB		\bigcirc			
	13	Clock error	13.1	Clock error 1	DB	-	\bigcirc	0	0	0
			13.2	Clock error 2	DB	\bigcirc	\bigcirc			
	14	Control process error	14.1	Control process error 1	DB		\bigcirc	0	0	0
			14.2	Control process error 2	DB		\bigcirc			
			14.3	Control process error 3	DB		\bigcirc			
			14.4	Control process error 4	DB		\bigcirc			
			14.5	Control process error 5	DB		\bigcirc			
			14.6	Control process error 6	DB		\bigcirc			
			14.7	Control process error 7	DB		\bigcirc			
			14.8	Control process error 8	DB		\bigcirc			
			14.9	Control process error 9	DB		\bigcirc			
			14.A	Control process error 10	DB		\bigcirc			
	15	Memory error 2 (EEP-ROM)	15.1	EEP-ROM error at power on	DB		\bigcirc	0	0	0
			15.2	EEP-ROM error during operation	DB		\bigcirc			
			15.4	Home position information read error	DB		\bigcirc			
	16	Encoder initial communication error 1	16.1	Encoder initial communication - Receive data error 1	DB		\bigcirc	1	1	0
			16.2	Encoder initial communication - Receive data error 2	DB		\bigcirc			
			16.3	Encoder initial communication - Receive data error 3	DB		\bigcirc			
			16.5	Encoder initial communication - Transmission data error 1	DB		O			
			16.6	Encoder initial communication - Transmission data error 2	DB	\checkmark	\bigcirc			
			16.7	Encoder initial communication - Transmission data error 3	DB		\bigcirc			
			16.A	Encoder initial communication - Process error 1	DB		\bigcirc			
			16.B	Encoder initial communication - Process error 2	DB		\bigcirc			
			16.C	Encoder initial communication - Process error 3	DB		\bigcirc			
			16.D	Encoder initial communication - Process error 4	DB		\bigcirc			
			16.E	Encoder initial communication - Process error 5	DB	-	\bigcirc			
			16.F	Encoder initial communication - Process error 6	DB		\bigcirc			
	17	Board error	17.1	Board error 1	DB		\bigcirc	0	0	0
			17.3	Board error 2	DB		\bigcirc			
			17.4	Board error 3	DB		\bigcirc			
	19	Memory error 3 (Frash-ROM)	19.1	Frash-ROM error 1	DB		\bigcirc	0	0	0
			19.2	Frash-ROM error 2	DB	-	\bigcirc			
	1A	Servo motor combination error	1A. 1	Servo motor combination error 1	DB		\bigcirc	1	1	0
			1A. 2	Servo motor control mode combination error	DB		\bigcirc			
			1A. 4	Servo motor combination error 2	DB		\bigcirc			
	1E	Encoder initial communication error 2	1E. 1	Encoder malfunction	DB	5	\bigcirc	1	1	0
			1E. 2	Load-side encoder malfunction	DB	\bigcirc	\bigcirc			
	1F	Encoder initial communication error 3	1F. 1	Incompatible encoder	DB		\bigcirc	1	1	0
			1F. 2	Incompatible load-side encoder	DB		\bigcirc			
	20	Encoder normal communication error 1	20.1	Encoder normal communication - Receive data error 1	EDB		\bigcirc	1	1	0
			20.2	Encoder normal communication - Receive data error 2	EDB		\bigcirc			
			20.3	Encoder normal communication - Receive data error 3	EDB		\bigcirc			
			20.5	Encoder normal communication - Transmission data error 1	EDB		\bigcirc			
			20.6	Encoder normal communication - Transmission data error 2	EDB		\bigcirc			
			20.7	Encoder normal communication - Transmission data error 3	EDB		\bigcirc			
			20.9	Encoder normal communication - Receive data error 4	EDB		\bigcirc			
			20.A	Encoder normal communication - Receive data error 5	EDB	-	\bigcirc			

,	No.	Name	Detail No.	Detail name	Stop method (Note 2, 3)	Alarm deactivation		Alarm code		
V						Alarm reset	Cycling the power	$\begin{array}{\|c\|} \hline \text { CN1 } \\ 22 \\ \text { (Bit 2) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { CN1 } \\ 23 \\ \text { (Bit 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{CN} 1 \\ 24 \\ (\text { Bit } 0) \\ \hline \end{array}$
$\left\|\begin{array}{c} \frac{\xi}{6} \\ \frac{\pi}{4} \end{array}\right\|$	21	Encoder normal communication error 2	21.1	Encoder data error 1	EDB		\bigcirc	1	1	0
			21.2	Encoder data update error	EDB		0			
			21.3	Encoder data waveform error	EDB	\checkmark	\bigcirc			
			21.4	Encoder non-signal error	EDB	$\xrightarrow{ }$	\bigcirc			
			21.5	Encoder hardware error 1	EDB		\bigcirc			
			21.6	Encoder hardware error 2	EDB		\bigcirc			
			21.9	Encoder data error 2	EDB	-	\bigcirc			
	24	Main circuit error	24.1	Ground fault detected by hardware detection circuit	DB		\bigcirc	1	0	0
			24.2	Ground fault detected by software detection function	DB	\bigcirc	\bigcirc			
	25	Absolute position erased	25.1	Servo motor encoder - Absolute position erased	DB	>	\bigcirc	1	1	0
	27	Initial magnetic pole detection error	27.1	Initial magnetic pole detection - Abnormal termination	DB	\bigcirc	\bigcirc	1	1	0
			27.2	Initial magnetic pole detection - Time out error	DB	\bigcirc	\bigcirc			
			27.3	Initial magnetic pole detection - Limit switch error	DB	0	0			
			27.4	Initial magnetic pole detection - Estimated error	DB	O	0			
			27.5	Initial magnetic pole detection - Position deviation error	DB	\bigcirc	\bigcirc			
			27.6	Initial magnetic pole detection - Speed deviation error	DB	\bigcirc	\bigcirc			
			27.7	Initial magnetic pole detection - Current error	DB	\bigcirc	0			
	28	Linear encoder error 2	28.1	Linear encoder - Environment error	EDB		0	1	1	0
	2A	Linear encoder error 1	2A. 1	Linear encoder error 1-1	EDB		\bigcirc	1	1	0
			2A. 2	Linear encoder error 1-2	EDB		\bigcirc			
			2A. 3	Linear encoder error 1-3	EDB	\bigcirc	\bigcirc			
			2A. 4	Linear encoder error 1-4	EDB		0			
			2A. 5	Linear encoder error 1-5	EDB		\bigcirc			
			2A. 6	Linear encoder error 1-6	EDB	-	\bigcirc			
			2A. 7	Linear encoder error 1-7	EDB		\bigcirc			
			2A. 8	Linear encoder error 1-8	EDB		\bigcirc			
	2B	Encoder counter error	2B. 1	Encoder counter error 1	EDB		0	1	1	0
			2B. 2	Encoder counter error 2	EDB	-	\bigcirc			
	30	Regenerative error	30.1	Regeneration heat error	DB	(Note 1)	(Note 1)	0	0	1
			30.2	Regeneration signal error	DB	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \text { (Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hline \text { (Note 1) } \\ \hline \end{array}$			
			30.3	Regeneration feedback signal error	DB	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \text { (Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{O} \\ (\text { Note 1) } \\ \hline \end{array}$			
	31	Overspeed	31.1	Abnormal motor speed	SD	\bigcirc	\bigcirc	1	0	1
	32	Overcurrent	32.1	Overcurrent detected at hardware detection circuit (during operation)	DB		\bigcirc	1	0	0
			32.2	Overcurrent detected at software detection function (during operation)	DB	\bigcirc	\bigcirc			
			32.3	Overcurrent detected at hardware detection circuit (during a stop)	DB	S	\bigcirc			
			32.4	Overcurrent detected at software detection function (during a stop)	DB	\bigcirc	\bigcirc			
	33	Overvoltage	33.1	Main circuit voltage error	EDB	\bigcirc	0	0	0	1
	35	Command frequency error	35.1	Command frequency error	SD	0	0	1	0	1
	37	Parameter error	37.1	Parameter setting range error	DB	\bigcirc	0	0	0	0
			37.2	Parameter combination error	DB		0			
			37.3	Point table setting error	DB		\bigcirc			
	39	Program error	39.1	Program error	DB	\bigcirc	\bigcirc	0	0	0
			39.2	Command argument external error	DB		0			
			39.3	Register No. error	DB		\bigcirc			
			39.4	Non-correspondence command error	DB	$\xrightarrow{>}$	0			
	3A	Inrush current suppression circuit error	3A. 1	Inrush current suppression circuit error	EDB	\triangle	\bigcirc	0	0	0
	3E	Operation mode error	3E. 6	Operation mode switch error	DB	\checkmark	0	0	0	0

8. TROUBLESHOOTING

	No.	Name	Detail No.	Detail name	Stop method (Note 2, 3)	Alarm deactivation		Alarm code		
,						Alarm reset	$\begin{array}{c}\text { Cycling } \\ \text { the } \\ \text { power }\end{array}$	$\begin{gathered} \hline \text { CN1 } \\ 22 \\ \text { (Bit 2) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { CN1 } \\ 23 \\ \text { (Bit 1) } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CN1 } \\ 24 \\ \text { (Bit 0) } \\ \hline \end{array}$
$\left\lvert\, \begin{aligned} & \frac{\varepsilon}{\mathbb{T}} \\ & \frac{\pi}{4} \end{aligned}\right.$	42	Servo control error (for linear servo motor and direct drive motor)	42.1	Servo control error by position deviation	EDB	(Note 4)	\bigcirc	1	1	0
			42.2	Servo control error by speed deviation	EDB	(Note 4)	\bigcirc			
			42.3	Servo control error by torque/thrust deviation	EDB	(Note 4)	\bigcirc			
		Fully closed loop control error (for fully closed loop control)	42.8	Fully closed loop control error by position deviation	EDB	(Note 4)	\bigcirc			
			42.9	Fully closed loop control error by speed deviation	EDB	(Note 4)	\bigcirc			
			42.A	Fully closed loop control error by position deviation during command stop	EDB	(Note 4)	\bigcirc			
	45	Main circuit device overheat	45.1	Main circuit device overheat error 1	SD	$\begin{array}{\|c\|} \hline O \\ (\text { Note 1) } \end{array}$	$\begin{gathered} \mathrm{O} \\ (\text { Note 1) } \end{gathered}$	0	1	1
			45.2	Main circuit device overheat error 2	SD	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hline \text { Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \bigcirc \\ (\text { Note 1) } \\ \hline \end{array}$			
	46	Servo motor overheat	46.1	Abnormal temperature of servo motor 1	SD	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hline \text { (Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \bigcirc \\ (\text { Note 1) } \\ \hline \end{array}$	0	1	1
			46.2	Abnormal temperature of servo motor 2	SD	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hline \text { Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hline \text { Note 1) } \\ \hline \end{array}$			
			46.3	Thermistor disconnected error	SD	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hline \text { (Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { O } \\ \hline \end{array}$			
			46.4	Thermistor circuit error	SD	$\begin{array}{\|c\|} \hline \text { O } \\ \hline \text { Note 1) } \\ \hline \end{array}$	$\begin{gathered} \mathrm{O} \\ (\text { Note 1) } \end{gathered}$			
			46.5	Abnormal temperature of servo motor 3	DB	$\begin{array}{\|c\|} \hline O \\ (\text { Note 1) } \end{array}$	$\begin{gathered} \mathrm{O} \\ (\text { Note 1) } \end{gathered}$			
			46.6	Abnormal temperature of servo motor 4	DB	$\begin{array}{\|c\|} \hline \bigcirc \\ \hline \text { (Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \bigcirc \\ (\text { Note 1) } \\ \hline \end{array}$			
	47	Cooling fan error	47.1	Cooling fan stop error	SD		\bigcirc	0	1	1
			47.2	Cooling fan speed reduction error	SD		\bigcirc			
	50	Overload 1	50.1	Thermal overload error 1 during operation	SD	$\begin{array}{\|c\|} \hline \text { O } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \text { (Note 1) } \\ \hline \end{array}$	0	1	1
			50.2	Thermal overload error 2 during operation	SD	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hline \text { Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hline \text { Note 1) } \\ \hline \end{array}$			
			50.3	Thermal overload error 4 during operation	SD	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hline \text { (Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hline \text { Note 1) } \\ \hline \end{array}$			
			50.4	Thermal overload error 1 during a stop	SD	$\begin{array}{\|c\|} \hline ○ \\ \hline \text { Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \bigcirc \\ (\text { Note 1) } \\ \hline \end{array}$			
			50.5	Thermal overload error 2 during a stop	SD	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hline \text { (Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \text { (Note 1) } \\ \hline \end{array}$			
			50.6	Thermal overload error 4 during a stop	SD	$\begin{array}{\|c\|} \hline \bigcirc \\ \hline \text { Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \bigcirc \\ (\text { Note 1) } \\ \hline \end{array}$			
	51	Overload 2	51.1	Thermal overload error 3 during operation	DB	$\left\lvert\, \begin{gathered} O \\ (\text { Note 1) } \end{gathered}\right.$	$\begin{array}{\|c\|} \hline \bigcirc \\ (\text { Note 1) } \\ \hline \end{array}$	0	1	1
			51.2	Thermal overload error 3 during a stop	DB	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hline \text { (Note 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \bigcirc \\ (\text { Note 1) } \end{array}$			
	52	Error excessive	52.1	Excess droop pulse 1	SD	0	\bigcirc	1	0	1
			52.3	Excess droop pulse 2	SD	\bigcirc	\bigcirc			
			52.4	Error excessive during 0 torque limit	SD	0	\bigcirc			
			52.5	Excess droop pulse 3	EDB	\bigcirc	\bigcirc			
	54	Oscillation detection	54.1	Oscillation detection error	EDB	0	0	0	1	1
	56	Forced stop error	56.2	Over speed during forced stop	EDB	\bigcirc	\bigcirc	1	1	0
			56.3	Estimated distance over during forced stop	EDB	0	0			

8. TROUBLESHOOTING

,	No.	Name	Detail No.	Detail name	Stop method (Note 2, 3)	Alarm deactivation		Alarm code		
\checkmark						Alarm reset	Cycling the power	$\begin{array}{\|c} \hline \text { CN1 } \\ 22 \\ \text { (Bit 2) } \end{array}$	$\begin{array}{\|c} \hline \mathrm{CN1} \\ 23 \\ \text { (Bit 1) } \end{array}$	$\begin{gathered} \mathrm{CN1} \\ 24 \\ (\text { Bit } 0) \end{gathered}$
$\left\lvert\, \begin{gathered} \frac{\xi}{\sqrt{6}} \\ \frac{\sqrt{6}}{4} \end{gathered}\right.$	61	Operation error	61.1	Point table setting range error	DB	\bigcirc	\bigcirc	1	0	1
	63	STO timing error	63.1	STO1 off	DB	\bigcirc	\bigcirc	1	1	0
			63.2	STO2 off	DB	0	\bigcirc			
	70	Load-side encoder initial communication error 1	70.1	Load-side encoder initial communication - Receive data error 1	DB		\bigcirc	1	1	0
			70.2	Load-side encoder initial communication - Receive data error 2	DB		\bigcirc			
			70.3	Load-side encoder initial communication - Receive data error 3	DB		O			
			70.5	Load-side encoder initial communication Transmission data error 1	DB		\bigcirc			
			70.6	Load-side encoder initial communication Transmission data error 2	DB		\bigcirc			
			70.7	Load-side encoder initial communication Transmission data error 3	DB		O			
			70.A	Load-side encoder initial communication - Process error 1	DB		O			
			70.B	Load-side encoder initial communication - Process error 2	DB		\bigcirc			
			70.C	Load-side encoder initial communication - Process error 3	DB		\bigcirc			
			70.D	Load-side encoder initial communication - Process error 4	DB		O			
			70.E	Load-side encoder initial communication - Process error 5	DB		\bigcirc			
			70.F	Load-side encoder initial communication - Process error 6	DB		\bigcirc			
	71	Load-side encoder normal communication error 1	71.1	Load-side encoder normal communication Receive data error 1	EDB	\checkmark	\bigcirc	1	1	0
			71.2	Load-side encoder normal communication Receive data error 2	EDB		O			
			71.3	Load-side encoder normal communication Receive data error 3	EDB	>	\bigcirc			
			71.5	Load-side encoder normal communication Transmission data error 1	EDB		\bigcirc			
			71.6	Load-side encoder normal communication Transmission data error 2	EDB		\bigcirc			
			71.7	Load-side encoder normal communication Transmission data error 3	EDB		\bigcirc			
			71.9	Load-side encoder normal communication Receive data error 4	EDB		\bigcirc			
			71.A	Load-side encoder normal communication Receive data error 5	EDB	-	\bigcirc			
	72	Load-side encoder normal communication error 2	72.1	Load-side encoder data error 1	EDB		\bigcirc	1	1	0
			72.2	Load-side encoder data update error	EDB		\bigcirc			
			72.3	Load-side encoder data waveform error	EDB		\bigcirc			
			72.4	Load-side encoder non-signal error	EDB		\bigcirc			
			72.5	Load-side encoder hardware error 1	EDB	-	\bigcirc			
			72.6	Load-side encoder hardware error 2	EDB		\bigcirc			
			72.9	Load-side encoder data error 2	EDB	-	\bigcirc			
	8A	USB communication time-out error/serial communication timeout error	8A. 1	USB communication time-out error/serial communication time-out error	SD	O	O	0	0	0
	8E	USB communication error/serial communication error	8E. 1	USB communication receive error/serial communication receive error	SD	O	O	0	0	0
			8E. 2	USB communication checksum error/serial communication checksum error	SD	\bigcirc	\bigcirc			
			8E. 3	USB communication character error/serial communication character error	SD	\bigcirc	\bigcirc			
			8E. 4	USB communication command error/serial communication command error	SD	\bigcirc	\bigcirc			
			8E. 5	USB communication data number error/serial communication data number error	SD	\bigcirc	\bigcirc			
	88888	Watchdog	8888._	Watchdog	DB	\bigcirc	0	,		

8. TROUBLESHOOTING

Note 1. Leave for about 30 minutes of cooling time after removing the cause of occurrence.
2. The following shows three stop methods of DB, EDB, and SD.

DB: Stops with dynamic brake. (Coasts for the servo amplifier without dynamic brake.)
MR-J4-03A6-RJ servo amplifiers coast. Note that EDB is applied when an alarm below occurs; [AL. 30.1], [AL. 32.2], [AL. 32.4], [AL. 51.1], [AL. 51.2]

EDB: Electronic dynamic brake stop (available with specified servo motors)
Refer to the following table for the specified servo motors. The stop method for other than the specified servo motors will be DB.

Series	Servo motor
HG-KR	HG-KR053/HG-KR13/HG-KR23/HG-KR43
HG-MR	HG-MR053/HG-MR13/HG-MR23/HG-MR43
HG-SR	HG-SR51/HG-SR52
HG-AK	HG-AK0136/HG-AK0236/HG-AK0336

SD: Forced stop deceleration
3. This is applicable when [Pr. PA04] is set to the initial value. The stop system of SD can be changed to DB using [Pr. PA04].
4. The alarm can be canceled by setting as follows

For the fully closed loop control: set [Pr. PE03] to "1 ___".
When a linear servo motor or direct drive motor is used: set [Pr. PL04] to "1 _ _ _"

8. TROUBLESHOOTING

8.3 Warning list

	No.	Name	Detail No.	Detail name	Stop method (Note 2, $3)$
	90	Home position return incomplete warning	90.1	Home position return incomplete	
			90.2	Home position return abnormal termination	
			90.5	Z-phase unpassed	
	91	Servo amplifier overheat warning (Note 1)	91.1	Main circuit device overheat warning	
	92	Battery cable disconnection warning	92.1	Encoder battery cable disconnection warning	
			92.3	Battery degradation	
	93	ABS data transfer warning	93.1	ABS data transfer requirement warning during magnetic pole detection	
	95	STO warning	95.1	STO1 off detection	DB
			95.2	STO2 off detection	DB
	96	Home position setting warning	96.1	In-position warning at home positioning	
			96.2	Command input warning at home positioning	
			96.3	Servo off warning at home positioning	
			96.4	Home positioning warning during magnetic pole detection	
	97	Program operation disabled/next station position warning	97.1	Program operation disabled warning	
			97.2	Next station position warning	
	98	Software limit warning	98.1	Forward rotation-side software stroke limit reached	
			98.2	Reverse reatation-side software stroke limit reached	
	99	Stroke limit warning	99.1	Forward rotation stroke end off	(Note 4)
			99.2	Reverse rotation stroke end off	(Note 4)
	9A	Optional unit input data error warning	9A. 1	Optional unit input data sign error	
			9A. 2	Optional unit BCD input data error	
	9F	Battery warning	9 F .1	Low battery	
			9 F .2	Battery degradation warning	
	E0	Excessive regeneration warning	E0.1	Excessive regeneration warning	
	E1	Overload warning 1	E1.1	Thermal overload warning 1 during operation	
			E1.2	Thermal overload warning 2 during operation	
			E1.3	Thermal overload warning 3 during operation	
			E1.4	Thermal overload warning 4 during operation	
			E1.5	Thermal overload error 1 during a stop	
			E1.6	Thermal overload error 2 during a stop	
			E1.7	Thermal overload error 3 during a stop	
			E1.8	Thermal overload error 4 during a stop	
	E2	Servo motor overheat warning	E2.1	Servo motor temperature warning	
	E3	Absolute position counter warning	E3.1	Multi-revolution counter travel distance excess warning	
			E3.2	Absolute position counter warning	
			E3.4	Absolute positioning counter EEP-ROM writing frequency warning	
			E3.5	Encoder absolute positioning counter warning	
	E5	ABS time-out warning	E5.1	Time-out during ABS data transfer	
			E5.2	ABSM off during ABS data transfer	
			E5.3	SON off during ABS data transfer	
	E6	Servo forced stop warning	E6.1	Forced stop warning	SD
	E8	Cooling fan speed reduction warning	E8.1	Decreased cooling fan speed warning	
			E8.2	Cooling fan stop	
	E9	Main circuit off warning	E9.1	Servo-on signal on during main circuit off	DB
			E9.2	Bus voltage drop during low speed operation	DB
	EA	ABS servo-on warning	EA. 1	ABS servo-on warning	
	EC	Overload warning 2	EC. 1	Overload warning 2	
	ED	Output watt excess warning	ED. 1	Output watt excess warning	
	F0	Tough drive warning	F0.1	Instantaneous power failure tough drive warning	
			F0.3	Vibration tough drive warning	
	F2	Drive recorder - Miswriting warning	F2.1	Drive recorder - Area writing time-out warning	
			F2.2	Drive recorder - Data miswriting warning	
	F3	Oscillation detection warning	F3.1	Oscillation detection warning	

8. TROUBLESHOOTING

γ	No.	Name	Detail No.	Detail name	Stop method (Note 2, 3)
	F5	Simple cam function - Cam data miswriting warning	F5.1	Cam data - Area writing time-out warning	
			F5.2	Cam data - Area miswriting warning	
			F5.3	Cam data checksum error	
	F6	Simple cam function - Cam control warning	F6. 1	Cam axis one cycle current value restoration failed	
			F6.2	Cam axis feed current value restoration failed	
			F6.3	Cam unregistered error	
			F6.4	Cam control data setting range error	
			F6.5	Cam No. external error	
			F6.6	Cam control inactive	

Note 1. Leave for about 30 minutes of cooling time after removing the cause of occurrence.
2. The following shows two stop methods of DB and SD.

DB: Stops with dynamic brake. (Coasts for the servo amplifier without dynamic brake.) MR-J4-03A6-RJ servo amplifiers coast.
SD: Forced stop deceleration
3. This is applicable when [Pr. PA04] is set to the initial value. The stop system of SD can be changed to DB using [Pr. PA04].
4. Quick stop or slow stop can be selected using [Pr. PD30].

9. OPTIONS AND PERIPHERAL EQUIPMENT

9. OPTIONS AND PERIPHERAL EQUIPMENT

Before connecting any option or peripheral equipment, turn off the power and wait
for 15 minutes or more until the charge lamp turns off. Then, confirm that the
voltage between P+ and N- is safe with a voltage tester and others. Otherwise, an
electric shock may occur. In addition, when confirming whether the charge lamp is
off or not, always confirm it from the front of the servo amplifier.
Configure MR-HDP01 with sink interface.

! CAUTION | Use the specified peripheral equipment and options to prevent a malfunction or a |
| :--- |
| fire |

The following items are the same as MR-J4-_A_-RJ servo amplifiers. For the details of the items, refer to each chapter/section (in "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual") indicated in the detailed explanation field.

Item	Detailed explanation	
	$\begin{gathered} \text { MR-J4-_A_-RJ } 100 \mathrm{~W} \text { or } \\ \text { more } \end{gathered}$	MR-J4-03A6-RJ
Cable/connector sets	Section 11.1	Section 18.8.1
Regenerative option	Section 11.2	
FR-BU2- (H) brake unit	Section 11.3	
FR-RC-(H) power regeneration converter	Section 11.4	
FR-CV-(H) power regeneration common converter	Section 11.5	
Junction terminal block MR-TB50 (recommended)	Section 11.6	
MR Configurator2	Section 11.7	
Battery	Section 11.8	
Selection example of wires	Section 11.9	Section 18.8.3
Molded-case circuit breakers, fuses, magnetic contactors	Section 11.10	
Power factor improving DC reactor	Section 11.11	
Power factor improving AC reactor	Section 11.12	
Relay (recommended)	Section 11.13	
Noise reduction techniques	Section 11.14	
Earth-leakage current breaker	Section 11.15	
EMC filter (recommended)	Section 11.16	
External dynamic brake	Section 11.17	
Panel through attachment (MR-J4ACN15K/MR-J3ACN)	Section 11.18	
Circuit protector		Section 18.8.4

9. OPTIONS AND PERIPHERAL EQUIPMENT

9.1 MR-HDP01 manual pulse generator

POINT

When using an MR-HDP01, set [Pr. PA13 Command pulse input form] to "_ 2 _ 2" or "_ 3 _ 2".

You can operate servo motors by using MR-HDP01 manual pulse generator. A multiplication to pulse signals which MR-HDP01 generates with external input signals can be changed with TP0 (Manual pulse generator multiplication 1) and TP1 (Manual pulse generator multiplication 2).
(1) Specifications

Item		Specifications
Power supply	Voltage	4.5 V DC to 13.2 V DC
	Consumption current	60 mA or less
Interface	Maximum output current: 20mA for open collector output	
Pulse signal form	A-phase/B-phase, 2 signals of 90° phase difference	
Pulse resolution	100 pulses $/ \mathrm{rev}$	
Maximum speed	Instantaneous maximum: $600 \mathrm{r} / \mathrm{min}, \mathrm{normal:} \mathrm{200} \mathrm{r/min}$	
Temperature range for operation	$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$	
Temperature range for storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$	

(2) Connection example

Note 1. To assign PP and NP, set [Pr. PD44] and [Pr. PD46] to "0 0 _ _".
2. To use this as an input device, assign to specified pin of the CN1 connector with [Pr. PD04] to [Pr. PD22].

9. OPTIONS AND PERIPHERAL EQUIPMENT

(3) Terminal assignment

$$
\begin{aligned}
& +5 \text { to } \\
& \begin{array}{l}
12 \mathrm{~V} 0 \mathrm{~V} \text { A } \quad \mathrm{B} \\
\times \otimes \otimes \otimes \times
\end{array}
\end{aligned}
$$

Signal name	Description
+5 to 12 V	Power supply input
0 V	Common for power and signal
A	A-phase output pulse
B	B-phase output pulse

(4) Mounting

(5) Dimensions
[Unit: mm]

MEMO

\qquad

10. COMMUNICATION FUNCTION (MITSUBISHI GENERAL-PURPOSE AC SERVO PROTOCOL)

The following items are the same as those of MR-J4-_A_-RJ servo amplifiers. For the details of the items, refer to each chapter/section (in "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual") indicated in the detailed explanation field.

Item	Detailed explanation	
	MR-J4-_A_-RJ 100 W or	MR-J4-03A6-RJ
Structure	Section 14.1	Section 18.9
Communication specifications	Section 14.2	
Protocol	Section 14.3	
Data processing	Section 14.5 .1	
Status display	Section 14.5 .2	
Parameter	Section 14.5 .3	
Prohibiting/canceling I/O devices (DIO)	Section 14.5 .6	
Alarm history	Section 14.5.10	
Current alarm	Section 14.5.11	
Other commands	Section 14.5.12	

POINT

- Creating and reading programs are not available with Mitsubishi generalpurpose AC servo protocol (RS-422 communication). Use MR Configurator2.
- A personal computer cannot be connected to the CN30 connector of MR-D01.
10.1 Command and data No. list

POINT

- Even if a command or data No. is the same between different model servo amplifiers, its description may differ.
- The symbols in the control mode column mean as follows.

CP: Positioning mode (point table method)
$B C D$: Positioning mode (point table method in the BCD input positioning operation)
This method is available only when the MR-D01 unit is connected. Refer to chapter 12 for details.
CL: Positioning mode (program method)
PS: Positioning mode (indexer method)

10.1.1 Reading command

(1) Status display (command [0] [1])

Command	Data No.	Description	Status display	Control mode			Frame length
					-	か	
[0] [1]	[0] [0]	Status display symbol and unit	Cumulative feedback pulses Servo motor-side cumulative feedback pulses (after gear)	\bigcirc	\bigcirc	\bigcirc	16
	[0] [1]		Servo motor speed Servo motor speed	\bigcirc	\bigcirc	\bigcirc	
	[0] [2]		Droop pulses Servo motor-side droop pulses	\bigcirc	\bigcirc	\bigcirc	
	[0] [3]		Cumulative command pulses				
	[0] [4]		Command pulse frequency				
	[0] [5]		Analog speed command voltage Analog speed limit voltage			V	
	[0] [6]		Analog torque limit voltage Analog torque command voltage				
	[0] [7]		Regenerative load ratio	\bigcirc	\bigcirc	\bigcirc	
	[0] [8]		Effective load ratio	\bigcirc	\bigcirc	\bigcirc	
	[0] [9]		Peak load ratio	\bigcirc	\bigcirc	\bigcirc	
	[0] [A]		Instantaneous torque Instantaneous thrust	\bigcirc	\bigcirc	\bigcirc	
	[0] [B]		Position within one-revolution Servo motor encoder position within onerevolution Virtual position within one-revolution	\bigcirc	\bigcirc	\bigcirc	
	[0] [C]		ABS counter Servo motor encoder ABS counter Virtual ABS counter	\bigcirc	\bigcirc	\bigcirc	
	[0] [D]		Load to motor inertia ratio Load to motor mass ratio	\bigcirc	\bigcirc	\bigcirc	
	[0] [E]		Bus voltage	\bigcirc	\bigcirc	\bigcirc	
	[0] [F] (Note)		Load-side cumulative feedback pulses	\bigcirc	\bigcirc	\bigcirc	
	[1] [0] (Note)		Load-side droop pulses	\bigcirc	\bigcirc	\bigcirc	
	[1] [1] (Note)		Load-side encoder information 1 Z-phase counter	\bigcirc	\bigcirc	\bigcirc	
	[1] [2] (Note)		Load-side encoder information 2	\bigcirc	\bigcirc	\bigcirc	
	[1] [6] (Note)		Temperature of servo motor thermistor	\bigcirc	\bigcirc	\bigcirc	
	[1] [7] (Note)		Servo motor-side cumulative feedback pulses (before gear)	\bigcirc	\bigcirc	\bigcirc	
	[1] [8] (Note)		Electrical angle	\bigcirc	\bigcirc	\bigcirc	
	[1] [E] (Note)		Servo motor-side/load-side position deviation	\bigcirc	\bigcirc	\bigcirc	
	[1] [F] (Note)		Servo motor-side/load-side speed deviation	\bigcirc	\bigcirc	\bigcirc	
	[2] [0]		Encoder inside temperature	\bigcirc	\bigcirc	\bigcirc	
	[2] [1]		Settling time	\bigcirc	\bigcirc	\bigcirc	
	[2] [2]		Oscillation detection frequency	\bigcirc	\bigcirc	\bigcirc	
	[2] [3]		Number of tough drive operations	\bigcirc	\bigcirc	\bigcirc	
	[2] [8]		Unit power consumption	\bigcirc	\bigcirc	\bigcirc	
	[2] [9]		Unit total power consumption	\bigcirc	\bigcirc	\bigcirc	
	[2] [A]		Current position	\bigcirc	\bigcirc	\checkmark	
	[2] [B]		Command position	\bigcirc	\bigcirc	∇	
	[2] [C]		Command remaining distance	\bigcirc	\bigcirc	\bigcirc	
	[2] [D]		Point table No./Program No./Station position No.	\bigcirc	\bigcirc	\bigcirc	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.

Command	Data No.	Description	Status display	Control mode			Frame length
					-	a	
[0] [1]	[2] [E]	Status display symbol and unit	Step No.		0	>	16
	[2] [F]		Analog override voltage	\bigcirc	0	0	
	[3] [0]		Override level	\bigcirc	\bigcirc	\bigcirc	
	[3] [3]		Cam axis one cycle current value	\bigcirc	0	\bigcirc	
	[3] [4]		Cam standard position	\bigcirc	\bigcirc	\bigcirc	
	[3] [5]		Cam axis feed current value	\bigcirc	0	-	
	[3] [6]		Cam No. in execution	\bigcirc	\bigcirc	∇	
	[3] [7]		Cam stroke amount in execution	\bigcirc	\bigcirc	\bigcirc	
	[3] [8]		Main axis current value	\bigcirc	\bigcirc	\bigcirc	
	[3] [9]		Main axis one cycle current value	\bigcirc	0	∇	
	[8] [0]	Status display data value and processing information	Cumulative feedback pulses Servo motor-side cumulative feedback pulses (after gear)	\bigcirc	O	O	12
	[8] [1]		Servo motor speed Servo motor speed	\bigcirc	O	0	
	[8] [2]		Droop pulses Servo motor-side droop pulses	\bigcirc	O	0	
	[8] [3]		Cumulative command pulses			\bigcirc	
	[8] [4]		Command pulse frequency			-	
	[8] [5]		Analog speed command voltage Analog speed limit voltage	\bigcirc			
	[8] [6]		Analog torque limit voltage Analog torque command voltage				
	[8] [7]		Regenerative load ratio	\bigcirc	\bigcirc	0	
	[8] [8]		Effective load ratio	\bigcirc	0	0	
	[8] [9]		Peak load ratio	\bigcirc	0	0	
	[8] [A]		Instantaneous torque Instantaneous thrust	\bigcirc	O	O	
	[8] [B]		Position within one-revolution Servo motor encoder position within onerevolution Virtual position within one-revolution	\bigcirc	O	0	
	[8] [C]		ABS counter Servo motor encoder ABS counter Virtual ABS counter	\bigcirc	O	0	
	[8] [D]		Load to motor inertia ratio Load to motor mass ratio	0	O	0	
	[8] [E]		Bus voltage	\bigcirc	\bigcirc	0	
	[8] [F] (Note)		Load-side cumulative feedback pulses	\bigcirc	\bigcirc	\bigcirc	
	[9] [0] (Note)		Load-side droop pulses	\bigcirc	0	0	
	[9] [1] (Note)		Load-side encoder information 1 Z-phase counter	\bigcirc	O	\bigcirc	
	[9] [2] (Note)		Load-side encoder information 2	\bigcirc	0	0	
	[9] [6] (Note)		Temperature of servo motor thermistor	\bigcirc	\bigcirc	0	
	[9] [7] (Note)		Servo motor-side cumulative feedback pulses (before gear)	\bigcirc	O	O	
	[9] [8] (Note)		Electrical angle	0	0	0	
	[9] [E] (Note)		Servo motor-side/load-side position deviation	\bigcirc	O	O	
	[9] [F] (Note)		Servo motor-side/load-side speed deviation	\bigcirc	0	0	
	[A] [0]		Encoder inside temperature	\bigcirc	\bigcirc	0	
	[A] [1]		Settling time	\bigcirc	0	0	
	[A] [2]		Oscillation detection frequency	0	0	0	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.

Command	Data No.	Description	Status display	Control mode			Frame length
				O O ¢ O O	Ј	の	
[0] [1]	[A] [3]	Status display data value and processing information	Number of tough drive operations	\bigcirc	\bigcirc	\bigcirc	12
	[A] [8]		Unit power consumption	\bigcirc	\bigcirc	\bigcirc	
	[A] [9]		Unit total power consumption	\bigcirc	\bigcirc	\bigcirc	
	[A] [A]		Current position	\bigcirc	\bigcirc	\checkmark	
	[A] [B]		Command position	\bigcirc	\bigcirc	∇	
	[A] [C]		Command remaining distance	\bigcirc	\bigcirc	\bigcirc	
	[A] [D]		Point table No./Program No./ Station position No.	\bigcirc	\bigcirc	\bigcirc	
	[A] [E]		Step No.	-	\bigcirc	\bigcirc	
	[A] [F]		Analog override voltage	\bigcirc	\bigcirc	\bigcirc	
	[B] [0]		Override level	\bigcirc	\bigcirc	\bigcirc	
	[B] [3]		Cam axis one cycle current value	\bigcirc	\bigcirc	\checkmark	
	[B] [4]		Cam standard position	\bigcirc	\bigcirc	-	
	[B] [5]		Cam axis feed current value	\bigcirc	\bigcirc	-	
	[B] [6]		Cam No. in execution	\bigcirc	\bigcirc		
	[B] [7]		Cam stroke amount in execution	\bigcirc	\bigcirc		
	[B] [8]		Main axis current value	\bigcirc	\bigcirc	-	
	[B] [9]		Main axis one cycle current value	\bigcirc	\bigcirc	\checkmark	

(2) Parameter (command [0] [4], [1] [5], [1] [6], [1] [7], [0] [8], and [0] [9])

Command	Data No.	Description	Control mode			Frame length
			O 0 0 0 0 0	Ј	の	
[0] [4]	[0] [1]	Reading parameter group 0000: Basic setting parameters ([Pr. PA__]) 0001: Gain/filter parameters ([Pr. PB__]) 0002: Extension setting parameters ([Pr. PC__]) 0003: I/O setting parameters ([Pr. PD__]) 0004: Extension setting 2 parameters ([Pr. PE__]) 0005: Extension setting 3 parameters ([Pr. PF__]) 0009: Option setting parameters ([Pr. Po__]) 000B: Linear servo motor/DD motor setting parameters ([Pr. PL__]) (Note) 000C: Positioning control parameters ([Pr. PT__]) Reads the parameter group specified with the command [8] [5] + data No. [0] [0]. Before reading the current values, therefore, always specify the parameter group with the command [8] [5] + data No. [0] [0].	\bigcirc	\bigcirc	\bigcirc	4
[1] [5]	[0] [1] to [F] [F]	Current value of each parameter Reads the current values of the parameters in the parameter group specified with the command [8] [5] + data No. [0] [0]. Before reading the current values, therefore, always specify the parameter group with the command [8] [5] + data No. [0] [0]. The decimal equivalent of the data No. (hexadecimal) value corresponds to the parameter No.	\bigcirc	\bigcirc	\bigcirc	12
[1] [6]	[0] [1] to [F] [F]	Upper limit value of each parameter setting range Reads the permissible upper limit values of the parameters in the parameter group specified with the command [8] [5] + data No. [0] [0]. Before reading the upper limit values, therefore, always specify the parameter group with the command [8] [5] + data No. [0] [0]. The decimal equivalent of the data No. (hexadecimal) value corresponds to the parameter No.	\bigcirc	\bigcirc	\bigcirc	

Command	Data No.	Description	Control mode			Frame length
			过	उ	0	
[1] [7]	[0] [1] to [F] [F]	Lower limit value of each parameter setting range Reads the permissible lower limit values of the parameters in the parameter group specified with the command [8] [5] + data No. [0] [0]. Before reading the lower limit values, therefore, always specify the parameter group with the command [8] [5] + data No. [0] [0]. The decimal equivalent of the data No. (hexadecimal) value corresponds to the parameter No.	O	\bigcirc	O	12
[0] [8]	[0] [1] to [F] [F]	Each parameter symbol Reads the symbols of the parameters in the parameter group specified with the command [8] [5] + data No. [0] [0]. Before reading the symbols, therefore, always specify the parameter group with the command [8] [5] + data No. [0] [0]. The decimal equivalent of the data No. (hexadecimal) value corresponds to the parameter No.	O	O	0	
[0] [9]	[0] [1] to [F] [F]	Writing enable/disable of parameters Reads writing enable/disable of the parameters in the parameter group specified with the command [8] [5] + data No. [0] [0]. Before reading writing enable/disable, therefore, always specify the parameter group with the command [8] [5] + data No. [0] [0]. 0000: Writing enabled 0001: Writing disabled	0	O	0	4

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.
(3) External I/O signals (command [1] [2])

Command	Data No.	Description	Control mode			Frame length	
			\|l		ठ	0	
[1] [2]	[0] [0] to [0] [2]	Input device status	O	\bigcirc	\bigcirc	8	
	[4] [0]	External input pin status	\bigcirc	\bigcirc	\bigcirc		
	[6] [0] to [6] [2]	Status of input device turned on by communication	\bigcirc	\bigcirc	0		
	[8] [0] to [8] [3]	Output device status	\bigcirc	\bigcirc	\bigcirc		
	[C] [0]	External output pin status	0	O	0		

(4) Current position latch display (command [1] [A])

Command	Data No.	Description	Control mode			Frame length
			O	-	の	
[1] [A]	[0] [0]	MSD (Mark detection) rising latch data (data part)	\bigcirc	\bigcirc		8
	[0] [1]	MSD (Mark detection) falling latch data (data part)	\bigcirc	\bigcirc		
	[0] [2]	MSD (Mark detection) rising latch data (data part + additional information)	\bigcirc	\bigcirc		12 or less
	[0] [3]	MSD (Mark detection) falling latch data (data part + additional information)	\bigcirc	\bigcirc		

(5) Alarm history (command [3] [3])

Command	Data No.	Description	Alarm occurrence sequence	Control mode			Frame length
				O 0 0 0 0	Ј	か	
[3] [3]	[1] [0]	Alarm No. in alarm history	Most recent alarm	\bigcirc	\bigcirc	\bigcirc	4
	[1] [1]		First alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [2]		Second alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [3]		Third alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [4]		Fourth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [5]		Fifth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [6]		Sixth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [7]		Seventh alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [8]		Eighth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [9]		Ninth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [A]		Tenth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [B]		Eleventh alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [C]		Twelfth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [D]		Thirteenth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [E]		Fourteenth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[1] [F]		Fifteenth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [0]	Alarm occurrence time in alarm history	Most recent alarm	\bigcirc	\bigcirc	\bigcirc	8
	[2] [1]		First alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [2]		Second alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [3]		Third alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [4]		Fourth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [5]		Fifth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [6]		Sixth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [7]		Seventh alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [8]		Eighth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [9]		Ninth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [A]		Tenth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [B]		Eleventh alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [C]		Twelfth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [D]		Thirteenth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [E]		Fourteenth alarm in past	\bigcirc	\bigcirc	\bigcirc	
	[2] [F]		Fifteenth alarm in past	\bigcirc	\bigcirc	\bigcirc	

(6) Current alarm (command [0] [2])

Command	Data No.	Description	Control mode			Frame length
			0 0 0 0 0	-	0	
[0] [2]	[0] [0]	Current alarm No.	\bigcirc	0	\bigcirc	4

(7) Status display at alarm occurrence (command [3] [5])

Command	Data No.	Description	Status display	Control mode			Frame length
				0 O 0 0	-	の	
[3] [5]	[0] [0]	Status display symbol and unit	Cumulative feedback pulses Servo motor-side cumulative feedback pulses (after gear)	\bigcirc	\bigcirc	\bigcirc	16
	[0] [1]		Servo motor speed Servo motor speed	\bigcirc	\bigcirc	\bigcirc	
	[0] [2]		Droop pulses Servo motor-side droop pulses	\bigcirc	\bigcirc	\bigcirc	
	[0] [3]		Cumulative command pulses				
	[0] [4]		Command pulse frequency				
	[0] [5]		Analog speed command voltage Analog speed limit voltage			V	
	[0] [6]		Analog torque limit voltage Analog torque command voltage				
	[0] [7]		Regenerative load ratio	\bigcirc	\bigcirc	\bigcirc	
	[0] [8]		Effective load ratio	\bigcirc	\bigcirc	\bigcirc	
	[0] [9]		Peak load ratio	\bigcirc	\bigcirc	\bigcirc	
	[0] [A]		Instantaneous torque Instantaneous thrust	\bigcirc	\bigcirc	\bigcirc	
	[0] [B]		Position within one-revolution Servo motor encoder position within onerevolution Virtual position within one-revolution	\bigcirc	\bigcirc	\bigcirc	
	[0] [C]		ABS counter Servo motor encoder ABS counter Virtual ABS counter	\bigcirc	\bigcirc	\bigcirc	
	[0] [D]		Load to motor inertia ratio Load to motor mass ratio	\bigcirc	\bigcirc	\bigcirc	
	[0] [E]		Bus voltage	\bigcirc	\bigcirc	\bigcirc	
	[0] [F] (Note)		Load-side cumulative feedback pulses	\bigcirc	\bigcirc	\bigcirc	
	[1] [0] (Note)		Load-side droop pulses	\bigcirc	\bigcirc	\bigcirc	
	[1] [1] (Note)		Load-side encoder information 1 Z-phase counter	\bigcirc	\bigcirc	\bigcirc	
	[1] [2] (Note)		Load-side encoder information 2	\bigcirc	\bigcirc	\bigcirc	
	[1] [6] (Note)		Temperature of servo motor thermistor	\bigcirc	\bigcirc	\bigcirc	
	[1] [7] (Note)		Servo motor-side cumulative feedback pulses (before gear)	\bigcirc	\bigcirc	\bigcirc	
	[1] [8] (Note)		Electrical angle	\bigcirc	\bigcirc	\bigcirc	
	[1] [E] (Note)		Servo motor-side/load-side position deviation	\bigcirc	\bigcirc	\bigcirc	
	[1] [F] (Note)		Servo motor-side/load-side speed deviation	\bigcirc	\bigcirc	\bigcirc	
	[2] [0]		Encoder inside temperature	\bigcirc	\bigcirc	\bigcirc	
	[2] [1]		Settling time	\bigcirc	\bigcirc	\bigcirc	
	[2] [2]		Oscillation detection frequency	\bigcirc	\bigcirc	\bigcirc	
	[2] [3]		Number of tough drive operations	\bigcirc	\bigcirc	\bigcirc	
	[2] [8]		Unit power consumption	\bigcirc	\bigcirc	\bigcirc	
	[2] [9]		Unit total power consumption	\bigcirc	\bigcirc	\bigcirc	
	[2] [A]		Current position	\bigcirc	\bigcirc	\checkmark	
	[2] [B]		Command position	\bigcirc	\bigcirc	∇	
	[2] [C]		Command remaining distance	\bigcirc	\bigcirc	\bigcirc	
	[2] [D]		Point table No./Program No./ Station position No.	\bigcirc	\bigcirc	\bigcirc	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.

Command	Data No.	Description	Status display	Control mode			Frame length
					-	0	
[3] [5]	[2] [E]	Status display symbol and unit	Step No.		0		16
	[2] [F]		Analog override voltage	0	\bigcirc	0	
	[3] [0]		Override level	\bigcirc	\bigcirc	\bigcirc	
	[3] [3]		Cam axis one cycle current value	0	\bigcirc	-	
	[3] [4]		Cam standard position	\bigcirc	0		
	[3] [5]		Cam axis feed current value	\bigcirc	0	-	
	[3] [6]		Cam No. in execution	O	\bigcirc	-	
	[3] [7]		Cam stroke amount in execution	O	\bigcirc	-	
	[3] [8]		Main axis current value	O	\bigcirc	\checkmark	
	[3] [9]		Main axis one cycle current value	0	0	\bigcirc	
	[8] [0]	Status display data value and processing information	Cumulative feedback pulses Servo motor-side cumulative feedback pulses (after gear)	\bigcirc	O	O	12
	[8] [1]		Servo motor speed Servo motor speed	\bigcirc	0	0	
	[8] [2]		Droop pulses Servo motor-side droop pulses	\bigcirc	O	0	
	[8] [3]		Cumulative command pulses	,		-	
	[8] [4]		Command pulse frequency	\bigcirc			
	[8] [5]		Analog speed command voltage Analog speed limit voltage	-			
	[8] [6]		Analog torque limit voltage Analog torque command voltage	\bigcirc			
	[8] [7]		Regenerative load ratio	\bigcirc	\bigcirc	\bigcirc	
	[8] [8]		Effective load ratio	0	0	\bigcirc	
	[8] [9]		Peak load ratio	0	0	\bigcirc	
	[8] [A]		Instantaneous torque Instantaneous thrust	\bigcirc	O	0	
	[8] [B]		Position within one-revolution Servo motor encoder position within one- revolution Virtual position within one-revolution ABS	\bigcirc	0	O	
	[8] [C]		ABS counter Servo motor encoder ABS counter Virtual ABS counter	\bigcirc	0	0	
	[8] [D]		Load to motor inertia ratio Load to motor mass ratio	\bigcirc	O	0	
	[8] [E]		Bus voltage	0	0	\bigcirc	
	[8] [F] (Note)		Load-side cumulative feedback pulses	0	0	\bigcirc	
	[9] [0] (Note)		Load-side droop pulses	0	0	0	
	[9] [1] (Note)		Load-side encoder information 1 Z-phase counter	\bigcirc	O	\bigcirc	
	[9] [2] (Note)		Load-side encoder information 2	0	0	\bigcirc	
	[9] [6] (Note)		Temperature of servo motor thermistor	0	0	\bigcirc	
	[9] [7] (Note)		Servo motor-side cumulative feedback pulses (before gear)	\bigcirc	O	\bigcirc	
	[9] [8] (Note)		Electrical angle	0	0	\bigcirc	
	[9] [E] (Note)		Servo motor-side/load-side position deviation	\bigcirc	O	\bigcirc	
	[9] [F] (Note)		Servo motor-side/load-side speed deviation	\bigcirc	0	0	
	[A] [0]		Encoder inside temperature	0	0	\bigcirc	
	[A] [1]		Settling time	0	0	0	

[^5]| Command | Data No. | Description | Status display | Control mode | | | Frame length |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Ј | ¢ | |
| [3] [5] | [A] [2] | Status display data value and processing information | Oscillation detection frequency | \bigcirc | \bigcirc | 0 | 12 |
| | [A] [3] | | Number of tough drive operations | \bigcirc | 0 | 0 | |
| | [A] [8] | | Unit power consumption | \bigcirc | 0 | 0 | |
| | [A] [9] | | Unit total power consumption | \bigcirc | 0 | \bigcirc | |
| | [A] [A] | | Current position | \bigcirc | \bigcirc | N | |
| | [A] [B] | | Command position | \bigcirc | 0 | V | |
| | [A] [C] | | Command remaining distance | \bigcirc | 0 | 0 | |
| | [A] [D] | | Point table No./Program No./ Station position No. | \bigcirc | O | O | |
| | [A] [E] | | Step No. | - | 0 | ∇ | |
| | [A] [F] | | Analog override voltage | \bigcirc | 0 | 0 | |
| | [B] [0] | | Override level | \bigcirc | \bigcirc | 0 | |
| | [B] [3] | | Cam axis one cycle current value | 0 | 0 | N | |
| | [B] [4] | | Cam standard position | \bigcirc | 0 | ∇ | |
| | [B] [5] | | Cam axis feed current value | \bigcirc | \bigcirc | ∇ | |
| | [B] [6] | | Cam No. in execution | \bigcirc | \bigcirc | N | |
| | [B] [7] | | Cam stroke amount in execution | \bigcirc | \bigcirc | N | |
| | [B] [8] | | Main axis current value | \bigcirc | \bigcirc | N | |
| | [B] [9] | | Main axis one cycle current value | 0 | 0 | V | |

(8) Point table setting data (command [4] [0], [4] [5], [5] [0], [5] [4], [5] [8], [6] [0], [6] [4])

Command	Data No.	Description	Control mode		Frame length
			过	๓	
[4] [0]	[0] [0] to [F] [F]	Reading position data of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.			8
[4] [5]	[0] [0] to [F] [F]	Reading M code of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.			
[5] [0]	[0] [0] to [F] [F]	Reading speed data of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.			
[5] [4]	[0] [0] to [F] [F]	Reading acceleration time constant of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.			
[5] [8]	[0] [0] to [F] [F]	Reading deceleration time constant of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.			
[6] [0]	[0] [0] to [F] [F]	Reading dwell of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.			
[6] [4]	[0] [0] to [F] [F]	Reading sub function of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.			

(9) Position data unit/Current position latch data (command [6] [C])

Command	Data No.	Description	Control mode			Frame length
				-	a	
[6] [C]	[0] [0]	Reading position data unit ___ x 0: mm, 1: inch, 2: pulse, 3: degree __ x_0: Enabled, 1: Disabled	O	O	O	4
	[0] [1]	Reading current position latch data Reads data latched at rising edge of LPS signal using LPOS command in the program operation.	-		,	12

(10) General purpose register (Rx) value (command [6] [D])

Command	Data No.	Description	Control mode			Frame length
				ठ	®	
[6] [D]	[0] [1]	Reading general purpose register (R1) value		0		8
	[0] [2]	Reading general purpose register (R2) value	V	0		
	[0] [3]	Reading general purpose register (R3) value	V	0	\bigcirc	
	[0] [4]	Reading general purpose register (R4) value	V	0	\checkmark	

(11) General purpose register (Dx) value (command [6] [E])

Command	Data No.	Description	Control mode			Frame length
			足	Ј	®	
[6] [E]	[0] [1]	Reading general purpose register (D1) value		0		8
	[0] [2]	Reading general purpose register (D2) value	V	0	-	
	[0] [3]	Reading general purpose register (D3) value	V	0	\bigcirc	
	[0] [4]	Reading general purpose register (D4) value	N	0	\bigcirc	

(12) General purpose register number (command [6] [F])

Command	Data No.	Description	Control mode			Frame length
			合	ठ	¢	
[6] [F]	[0] [0]	Reading general purpose register (Rx) number	,	\bigcirc		8
	[0] [1]	Reading general purpose register (Dx) number		0	S	

(13) Others (command [0] [0], [0] [2])

Command	Data No.	Description	Control mode			Frame length
			合	Ј	0	
[0] [0]	[1] [2]	Reading test operation mode 0000: Normal mode (not test operation mode) 0001: JOG operation 0002: Positioning operation 0004: Output signal (DO) forced output 0005: Single-step feed operation	\bigcirc	\bigcirc	O (No te)	4
	[1] [D]	Reading EEP-ROM stored data type 0000: Initial state 0001: Point table method 0002: Program method	0	\bigcirc		
	[1] [E]	Reading control mode 0006: Positioning mode (point table method) 0007: Positioning mode (program method) 0008: Positioning mode (indexer method)	\bigcirc	\bigcirc	\bigcirc	
[0] [2]	[9] [0]	Servo motor-side pulse unit absolute position	0	\bigcirc	\bigcirc	8
	[9] [1]	Command unit absolute position	0	\bigcirc	0	
	[7] [0]	Software version	0	\bigcirc	0	16

Note. "0005 (single-step feed operation)" is not available in the indexer method.

10．1．2 Writing commands

（1）Status display（command［8］［1］）

Command	Data No．	Description	Setting range	Control mode			Frame length
				O 0 0 0 0	Ј	\cdots	
［8］［1］	［0］［0］	Status display data deletion	1EA5	0	0	0	4

（2）Parameter（command［9］［4］，［8］［5］）

Command	Data No．	Description	Setting range	Control mode			Frame length
				O 0 0 0 0	Ј	か	
［9］［4］	［0］［1］to［F］［F］	Writing each parameter Writes the values of the parameters in the parameter group specified with the command［8］［5］＋data No．［0］［0］．Before writing the values，therefore，always specify the parameter group with the command［8］［5］＋data No．［0］［0］． The decimal equivalent of the data No．（hexadecimal）value corresponds to the parameter No．	Depending on the parameter	\bigcirc	\bigcirc	\bigcirc	12
［8］［5］	［0］［0］	Parameter group writing 0000：Basic setting parameters（［Pr．PA＿＿］） 0001：Gain／filter parameters（［Pr．PB＿＿］） 0002：Extension setting parameters（［Pr．PC＿＿］） 0003：I／O setting parameters（［Pr．PD＿＿］） 0004：Extension setting 2 parameters（［Pr．PE＿＿］） 0005：Extension setting 3 parameters（［Pr．PF＿＿］） 0009：Option setting parameters（［Pr．Po＿＿］） 000B：Linear servo motor／DD motor setting parameters（［Pr． PL_{-}］）（Note） 000C：Positioning control parameters（［Pr．PT＿＿］）	0000 to 000C	\bigcirc	\bigcirc	\bigcirc	4

Note．This is not available with the MR－J4－03A6－RJ servo amplifier．
（3）External I／O signals（command［9］［2］）

	Data No．	Description	Setting range	Control mode			Frame length
Command				O 0 ¢ O	Ј	ロ	
［9］［2］	［6］［0］to［6］［2］	Communication input device signal	Refer to section 10．2．2．	\bigcirc	\bigcirc	\bigcirc	8

（4）Alarm history（command［8］［2］）

Command	Data No．	Description	Setting range	Control mode			Frame length
				O 0 0 0 0	－	の	
［8］［2］	［2］［0］	Alarm history clear	1EA5	\bigcirc	\bigcirc	\bigcirc	4

(5) Current alarm (command [8] [2])

Command	Data No.	Description	Setting range	Control mode			Frame length
					ठ	0	
[8] [2]	[0] [0]	Alarm clear	1EA5	\bigcirc	0	0	4

(6) I/O device prohibition (command [9] [0])

Command	Data No.	Description	Setting range	Control mode			Frame length
					Ј	®	
[9] [0]	[0] [0]	Turns off the input device, external analog input signal, and pulse train input, except EM2, LSP and LSN, independently of the external on/off statuses.	1EA5	O	O	O	4
	[0] [3]	Prohibits all output devices (DO).	1EA5	0	\bigcirc	0	
	[1] [0]	Cancels the prohibition of the input device, external analog input signal and pulse train input, except EM2, LSP and LSN.	1EA5	\bigcirc	\bigcirc	\bigcirc	
	[1] [3]	Cancels the prohibition of the output device.	1EA5	0	0	0	

(7) Operation mode selection (command [8] [B])

Command	Data No.	Description	Setting range	Control mode			Frame length
				O	O	a	
[8] [B]	[0] [0]	Selection of test operation mode 0000: Test operation mode cancel 0001: JOG operation 0002: Positioning operation 0004: Output signal (DO) forced output 0005: Single-step feed operation	$\begin{array}{\|l\|} \hline 0000 \text { to 0002, } \\ 0004,0005 \end{array}$	\bigcirc	O	($\begin{gathered}\mathrm{O} \\ \mathrm{No} \\ \text { te) }\end{gathered}$	4

Note. "0005 (single-step feed operation)" is not available in the indexer method.
(8) Test operation mode data (command [9] [2], [A] [0])

Command	Data No.	Description	Setting range	Control mode			Frame length
				O	Ј	¢	
[9] [2]	[0] [0] to [0] [2]	Input signal for test operation	$\begin{aligned} & \hline \text { (Refer to } \\ & \text { section 14.5.7 } \\ & \text { of "MR-J4- } \\ & \text { A_(-RJ) Servo } \\ & \hline \text { Amplifier } \\ & \text { Instruction } \\ & \text { Manual".) } \\ & \hline \end{aligned}$	\bigcirc	O	\bigcirc	8
	[A] [0]	Forced output of signal pin	(Refer to section 14.5.9 of "MR-J4- A_(-RJ) Servo Amplifier Instruction Manual".)	\bigcirc	\bigcirc	0	

(9) Point table setting data (command [C] [0], [C] [2], [C] [6], [C] [7], [C] [8], [C] [A], [C] [B])

Command	Data No.	Description	Setting range	Control mode		Frame length
				O 0 0 0 0	נ	
[C] [0]	[0] [0] to [F] [F]	Writing position data of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.	$\begin{aligned} & -999999 \text { to } \\ & 999999 \end{aligned}$		∇	8
[C] [2]	[0] [0] to [F] [F]	Writing M code of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.	0 to 99			
[C] [6]	[0] [0] to [F] [F]	Writing speed data of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.	0 to permissible speed			
[C] [7]	[0] [0] to [F] [F]	Writing acceleration time constant of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.	0 to 20000			
[C] [8]	[0] [0] to [F] [F]	Writing deceleration time constant of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.	0 to 20000			
[C] [A]	[0] [0] to [F] [F]	Writing dwell of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.	0 to 20000			
[C] [B]	[0] [0] to [F] [F]	Writing sub function of each point table The decimal equivalent of the data No. value (hexadecimal) corresponds to the point table No.	0 to 3, 8 to 11			

(10) General purpose register (Rx) value (command [B] [9])

Command	Data No.	Description	Setting range	Control mode			Frame length
				O 0 0 0 0	J	\cdots	
[B] [9]	[0] [1]	Writing general purpose register (R1) value	Depends on commands to use. Refer to section 5.2.2.		0		8
	[0] [2]	Writing general purpose register (R2) value			0		
	[0] [3]	Writing general purpose register (R3) value			\bigcirc		
	[0] [4]	Writing general purpose register (R4) value			\bigcirc		

(11) General purpose register (Dx) value (command $[B][A]$)

Command	Data No.	Description	Setting range	Control mode			Frame length
				足	৩	の	
[B] [A]	[0] [1]	Writing general purpose register (D1) value	Depends on commands to use. Refer to section 5.2.2.		\bigcirc		8
	[0] [2]	Writing general purpose register (D2) value			\bigcirc		
	[0] [3]	Writing general purpose register (D3) value			\bigcirc		
	[0] [4]	Writing general purpose register (D4) value			\bigcirc		

10.2 Detailed explanations of commands

10.2.1 External I/O signal status (DIO diagnosis)

(1) Reading input device status The current input device status can be read.
(a) Transmission

Transmit command [1] [2] + data No. [0] [0] to [0] [3].

Command	Data No.
$[1][2]$	$[0][0]$ to $[0][3]$

(b) Return

The slave station returns the status of the input devices.

Command of each bit is transmitted to the master station as hexadecimal data.

Bit	Symbol			
	Data No. [0] [0]	Data No. [0] [1]	Data No. [0] [2]	Data No. [0] [3]
0	SON		MD0	POS00
1	LSP	ABSM	MD1	POS01
2	LSN	ABSR		POS02
3	TL	-	TCH	POS03
4	TL1	-	TP0	POS10
5	PC	-	TP1	POS11
6	RES		OVR	POS12
7	CR			POS13
8	SP1		STAB	POS20
9	SP2		DOG/SIG	POS21
10	SP3		SPD1	POS22
11	ST1/RS2		SPD2	POS23
12	ST2/RS1		SPD3	POSP
13	CMX1		SPD4	POSN
14	CMX2			STRB
15	LOP			
16		MSD	LPS	
17		PI1	RT	
18	EM2/EM1	PI2	RTCDP	
19		PI3		
20	STAB2	CAMC	OVO	
21		CIO	OV1	
22		CI1	OV2	
23		CI2	OV3	
24	TSTP	CI3	DIO	-
25		CLTC	DI1	
26		CPCD	DI2	
27	CDP		DI3	
28	CLD		DI4	
29	MECR (Note)		DI5	
30			DI6	-
31			DI7	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.
(2) Reading external input pin status

Reads the on/off statuses of the external input pins.
(a) Transmission

Transmit command [1] [2] + data No. [4] [0], [4] [1].

Command	Data No.
$[1][2]$	$[4][0],[4][1]$

(b) Return

The on/off statuses of the input pins are returned.

Bit	CN1 connector pin	CN10 connector pin
0	43	1
1	44	2
2	42	3
3	15	4
4	19	5
5	41	6
6	16	7
7	17	8
8	18	9
9	45	10
10	10 (Note)	11
11	35 (Note)	12
12		15
13		16
14		17
15		18

Bit	CN1 connector pin	CN10 connector pin
16		19
17		20
18		21
19		26
20		27
21		28
22		29
23		30
24		31
25		32
26		33
27		34
28		35
29		36
30		
31		

Note. When the pulse train input is selected with [Pr. PD44] or [Pr. PD46], this bit will continuously be "0" (off).
(3) Reading the status of input devices switched on with communication Reads the on/off statuses of the input devices switched on with communication.
(a) Transmission

Transmit command [1] [2] + data No. [6] [0] to [6] [3].

Command	Data No.
$[1][2]$	$[6][0]$ to [6] [3]

(b) Return

The slave station returns the status of the input devices.

Bit	Symbol			
	Data No. [6] [0]	Data No. [6] [1]	Data No. [6] [2]	Data No. [6] [3]
0	SON		MD0	POS00
1	LSP	ABSM	MD1	POS01
2	LSN	ABSR		POS02
3	TL		TCH	POS03
4	TL1	-	TP0	POS10
5	PC	-	TP1	POS11
6	RES		OVR	POS12
7	CR			POS13
8	SP1		STAB	POS20
9	SP2		DOG/SIG	POS21
10	SP3		SPD1	POS22
11	ST1/RS2		SPD2	POS23
12	ST2/RS1		SPD3	POSP
13	CMX1		SPD4	POSN
14	CMX2			STRB
15	LOP			-
16		MSD	LPS	
17		PI1	RT	
18	EM2/EM1	PI2	RTCDP	仡
19		PI3		
20	STAB2	CAMC	OVO	
21		CIO	OV1	
22		CI1	OV2	
23		CI2	OV3	
24	TSTP	CI3	DIO	
25		CLTC	DI1	
26		CPCD	DI2	
27	CDP		DI3	,
28	CLD		DI4	
29	MECR (Note)		DI5	
30			DI6	-
31			DI7	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.
(4) Reading external output pin status

Reads the on/off statuses of the external output pins.
(a) Transmission

Transmit command [1] [2] + data No. [C] [0], [C] [1].

Command	Data No.
$[1][2]$	$[C][0],[C][1]$

(b) Return

The slave station returns the status of the output devices.

Bit	CN1 connector pin	CN10 connector pin
0	49	22
1	24	23
2	23	24
3	25	25
4	22	38
5	48	39
6	33	40
7	13 (Note)	41
8	14 (Note)	42
9		43
10		44
11		45
12		46
13		47
14		48
15		49

Bit	CN1 connector pin	CN10 connector pin
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.
(5) Reading output device status

Reads the on/off statuses of the output devices.
(a) Transmission

Transmit command [1] [2] + data No. [8] [0] to [8] [3].

Command	Data No.
$[1][2]$	$[8][0]$ to $[8][3]$

(b) Return

The slave station returns the status of the input/output devices.

Bit	Symbol			
	Data No. [8] [0]	Data No. [8] [1]	Data No. [8] [2]	Data No. [8] [3]
0	RD			MCD00
1	SA	-		MCD01
2	ZSP			MCD02
3	TLC		CPO	MCD03
4	VLC		ZP	MCD10
5	INP		POT	MCD11
6			PUS	MCD12
7	WNG		MEND	MCD13
8	ALM			ACD0
9	OP			ACD1
10	MBR			ACD2
11	DB (Note)			ACD3
12	ALCD0		PED	PRQ0
13	ALCD1			PRQ1
14	ALCD2			,
15	BWNG			,
16				,
17			ALMWNG	
18			BW9F	
19		MSDH		
20		MSDL		
21		SOUT		,
22		OUT1		
23		OUT2		
24		OUT3	PT0/PS0	
25	CDPS	CAMS	PT1/PS1	
26	CLDS (Note)	CLTS	PT2/PS2	
27	ABSV	CLTSM	PT3/PS3	
28		CLTS	PT4/PS4	
29			PT5/PS5	
30			PT6/PS6	
31	MTTR (Note)		PT7/PS7	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.

10.2.2 Input device on/off

POINT

- The on/off statuses of all devices in the servo amplifier are the status of the data received at last. Therefore, when there is a device which must be kept on, transmit data which turns the device on every time.

Each input device can be switched on/off. However, when the device to be switched off is in the external input signal, also switch off the input signal.

Transmit command [9] [2] + data No. [6] [0] to [6] [3].

Command	Data No.	Setting data
$[9][2]$	$[6][0]$ to $[6][3]$	See below.

Command of each bit is transmitted to the master station as hexadecimal data.

Bit	Symbol			
	Data No. [6] [0]	Data No. [6] [1]	Data No. [6] [2]	Data No. [6] [3]
0	SON		MD0	POS00
1	LSP	ABSM	MD1	POS01
2	LSN	ABSR		POS02
3	TL	-	TCH	POS03
4	TL1		TP0	POS10
5	PC		TP1	POS11
6	RES	-	OVR	POS12
7	CR			POS13
8	SP1		STAB	POS20
9	SP2		DOG/SIG	POS21
10	SP3		SPD1	POS22
11	ST1/RS2		SPD2	POS23
12	ST2/RS1		SPD3	POSP
13	CMX1		SPD4	POSN
14	CMX2			STRB
15	LOP			
16		MSD	LPS	
17		PI1	RT	
18	EM2/EM1	PI2	RTCDP	
19		PI3		
20	STAB2	CAMC	OVO	
21		CIO	OV1	
22		CI1	OV2	
23		CI2	OV3	
24	TSTP	CI3	DIO	
25		CLTC	DI1	
26		CPCD	DI2	
27	CDP		DI3	
28	CLD		D14	
29	MECR (Note)		DI5	
30			DI6	
31			DI7	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.

10.2.3 Input device on/off (for test operation)

Each input devices can be turned on/off for test operation. However, when the device to be switched off is in the external input signal, also switch off the input signal.

Transmit command [9] [2] + data No. [0] [0] to [0] [3].

Command	Data No.	Setting data
$[9][2]$	$[0][0]$ to [0] [3]	See below.

Bit	Symbol			
	Data No. [0] [0]	Data No. [0] [1]	Data No. [0] [2]	Data No. [0] [3]
0	SON		MD0	POS00
1	LSP	ABSM	MD1	POS01
2	LSN	ABSR		POS02
3	TL		TCH	POS03
4	TL1	-	TP0	POS10
5	PC	-	TP1	POS11
6	RES		OVR	POS12
7	CR			POS13
8	SP1		STAB	POS20
9	SP2		DOG/SIG	POS21
10	SP3		SPD1	POS22
11	ST1/RS2		SPD2	POS23
12	ST2/RS1		SPD3	POSP
13	CMX1		SPD4	POSN
14	CMX2			STRB
15	LOP			
16		MSD	LPS	
17		PI1	RT	
18	EM2/EM1	Pl2	RTCDP	
19		PI3		
20	STAB2	CAMC	OVO	
21		CIO	OV1	
22		CI1	OV2	
23		CI2	OV3	
24	TSTP	CI3	DIO	
25		CLTC	DI1	
26		CPCD	DI2	-
27	CDP		DI3	
28	CLD		DI4	-
29	MECR (Note)	-	DI5	-
30			DI6	
31			DI7	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.

10.2.4 Test operation mode

POINT

The test operation mode is used to check operation. Do not use it for actual operation.

- If communication stops for longer than 0.5 s during test operation, the servo amplifier decelerates to a stop, resulting in servo-lock. To prevent this, keep the communication all the time by checking the status display, etc.
- Even during operation, you can switch the servo amplifier to the test operation mode. In this case, switching to the test operation mode will shut off the base circuit to coast the motor.
(1) How to prepare and cancel the test operation mode
(a) Preparing the test operation mode

Set the test operation mode type with the following procedure.

1) Selection of test operation mode

Transmit the command $[8][B]+$ data No. $[0][0]+$ data to select the test operation mode.

Command	Data No.	Transmission data	Selection of test operation mode
$[8][B]$	$[0][0]$	0004	Output signal (DO) forced output (Note)
	0005	Single-step feed	

Note. Refer to section 10.2 .5 for the output signal (DO) forced output.
2) Check of test operation mode

Read the test operation mode set for the slave station, and check that it is set correctly.
a) Transmission

Transmit command [0] [0] + data No. [1] [2].

Command	Data No.
$[0][0]$	$[1][2]$

b) Return

The slave station returns the preset operation mode.

0: Normal mode (not test operation mode)
1: JOG operation
2: Positioning operation
3: Motor-less operation
4: Output signal (DO) forced output
5: Single-step feed
(b) Cancel of test operation mode

To stop the test operation mode, transmit the command [8] [B] + data No. [0] [0] + data. Before switching from the test operation mode to the normal operation mode, turn off the servo amplifier once.

Command	Data No.	Transmission data	Selection of test operation mode
$[8][B]$	$[0][0]$	0000	Test operation mode canceled

(2) Single-step feed

Set each value of target point tables for the single-step feed before executing single-step feed. Transmit command and data No. to execute single-step feed.

Note 1. After checking ZP (Home position return completion), start it. See the 4 bit of the read data with the command [1] [2] and data No. [8] [2].
2. A point table No. in hexadecimal will be entered to "__".

10.2.5 Output signal pin on/off (output signal (DO) forced output)

In the test operation mode, the output signal pins can be turned on/off regardless of the servo status. Disable the external input signals in advance with command [9] [0].
(1) Selecting the output signal (DO) forced output of the test operation mode

Transmit command + [8] [B] + data No. [0] [0] + data "0004" to select the output signal (DO) forced output.

(2) External output signal on/off

Transmit the following communication commands.

Command	Data No.	Setting data
$[9][2]$	$[A][0],[A][1]$	See below.

Bit	CN1 connector pin	CN10 connector pin	Bit	CN1 connector pin	CN10 connector pin
0	49	22	16	-	-
1	24	23	17		-
2	23	24	18	-	-
3	25	25	19	,	-
4	22	38	20		
5	48	39	21		-
6	33	40	22		
7	13 (Note)	41	23		
8	14 (Note)	42	24		
9		43	25		
10		44	26		
11		45	27		
12	,	46	28		-
13		47	29		-
14		48	30		
15		49	31		

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.
(3) Output signal (DO) forced output

To stop the output signal (DO) forced output, transmit command [8] [B] + data No. [0] [0] + data. Before switching from the test operation mode to the normal operation mode, turn off the servo amplifier once.

Command	Data No.	Transmission data	Selection of test operation mode
$[8][B]$	$[0][0]$	0000	Test operation mode canceled

10.2.6 Point table

(1) Reading data
(a) Position data

Reads position data of point tables.

1) Transmission

Transmits the command [4] [0] + the data No. [0] [1] to [F] [F] corresponding to the point tables to read. Refer to section 10.1.1.
2) Return

The slave station returns the position data of point table requested.

(b) Speed data

Reads speed data of point tables.

1) Transmission

Transmits the command [5] [0] + the data No. [0] [1] to [F] [F] corresponding to the point tables to read. Refer to section 10.1.1.
2) Return

The slave station returns the speed data of point table requested.

$\overline{\text { Data is transferred in hexadecimal. }}$

0 : Data is used unchanged in hexadecimal.
1: Data must be converted into decimal.
Position data writing type
0 : Enabled after writing
1: Enabled when power is cycled after writing
(c) Acceleration time constant

Reads acceleration time constant of point tables.

1) Transmission

Transmits the command [5] [4] + the data No. [0] [1] to [F] [F] corresponding to the point tables to read. Refer to section 10.1.1.
2) Return

The slave station returns the acceleration time constant of point table requested.

0 : Data is used unchanged in hexadecimal.
1: Data must be converted into decimal.
Position data writing type
0 : Enabled after writing
1: Enabled when power is cycled after writing
(d) Deceleration time constant

Reads deceleration time constant of point tables.

1) Transmission

Transmits the command [5] [8] + the data No. [0] [1] to [F] [F] corresponding to the point tables to read. Refer to section 10.1.1.
2) Return

The slave station returns the deceleration time constant of point table requested.

0 : Data is used unchanged in hexadecimal.
1: Data must be converted into decimal.
Position data writing type
0 : Enabled after writing
1: Enabled when power is cycled after writing
(e) Dwell

Reads dwell of point tables.

1) Transmission

Transmits the command [6] [0] + the data No. [0] [1] to [F] [F] corresponding to the point tables to read. Refer to section 10.1.1.
2) Return

The slave station returns the dwell of point table requested.

0 : Data is used unchanged in hexadecimal.
1: Data must be converted into decimal.
Position data writing type
0 : Enabled after writing
1: Enabled when power is cycled after writing
(f) Sub function

Reads sub function of point tables.

1) Transmission

Transmits the command [6] [4] + the data No. [0] [1] to [F] [F] corresponding to the point tables to read. Refer to section 10.1.1.
2) Return

The slave station returns the sub function of point table requested.

0 : Data is used unchanged in hexadecimal.
1: Data must be converted into decimal.
Position data writing type
0 : Enabled after writing
1: Enabled when power is cycled after writing
(g) M code

Reads M code of point tables.

1) Transmission

Transmits the command [4] [5] + the data No. [0] [1] to [F] [F] corresponding to the point tables to read. Refer to section 10.1.1.
2) Return

The slave station returns the M code of point table requested.

0 : Data is used unchanged in hexadecimal.
1: Data must be converted into decimal.
Position data writing type
0 : Enabled after writing
1: Enabled when power is cycled after writing
(2) Writing data

| If setting values need to be changed with a high frequency (i.e. once or more per |
| :--- | :--- |
| one hour), write the setting values to the RAM, not to the EEP-ROM. The EEP- |
| ROM has a limitation in the number of write times and exceeding this limitation |
| causes the servo amplifier to malfunction. Note that the number of write times to |
| the EEP-ROM is limited to approximately 100,000. |

(a) Position data

Writes position data of point tables.
Transmits the command [C] [0] + the data No. [0] [1] to [F] [F] corresponding to the point tables to write + data. Refer to section 10.1.1.

Command	Data No.	Data
$[\mathrm{C}][0]$	$[0][1]$ to $[F][F]$	Refer to the following diagram.

When the position data is changed frequently using communication, set " 1 " to the mode to change only the RAM data in the servo amplifier.
When changing data once or more within an hour, do not write it to the EEP-ROM.
(b) Speed data

Writes speed data of point tables.
Transmits the command [C] [6] + the data No. [0] [1] to [F] [F] corresponding to the point tables to write + data. Refer to section 10.1.1.

Command	Data No.	Data
$[C][6]$	$[0][1]$ to $[F][F]$	Refer to the following diagram.

When the speed data is changed frequently using communication, set " 1 " to the mode to change only the RAM data in the servo amplifier.
When changing data once or more within an hour, do not write it to the EEP-ROM.
(c) Acceleration time constant

Writes acceleration time constant of point tables.
Transmits the command [C] [7] + the data No. [0] [1] to [F] [F] corresponding to the point tables to write + data. Refer to section 10.1.1.

Command	Data No.	Data
$[\mathrm{C}][7]$	$[0][1]$ to $[\mathrm{F}][\mathrm{F}]$	Refer to the following diagram.

When the acceleration time constant is changed frequently using communication, set "1" to the mode to change only the RAM data in the servo amplifier.
When changing data once or more within an hour, do not write it to the EEP-ROM.
(d) Deceleration time constant

Writes deceleration time constant of point tables.
Transmits the command [C] [8] + the data No. [0] [1] to [F] [F] corresponding to the point tables to write + data. Refer to section 10.1.1.

Command	Data No.	Data
$[C][8]$	$[0][1]$ to $[F][F]$	Refer to the following diagram.

When the deceleration time constant is changed frequently using communication, set "1" to the mode to change only the RAM data in the servo amplifier.
When changing data once or more within an hour, do not write it to the EEP-ROM.
(e) Dwell

Writes dwell of point tables.
Transmits the command [C] [A] + the data No. [0] [1] to [F] [F] corresponding to the point tables to write + data. Refer to section 10.1.1.

Command	Data No.	Data
$[C][A]$	$[0][1]$ to $[F][F]$	Refer to the following diagram.

When the dwell is changed frequently using communication, set "1" to the mode to change only the RAM data in the servo amplifier.
When changing data once or more within an hour, do not write it to the EEP-ROM.
(f) Sub function

Writes sub function of point tables.
Transmits the command [C] [B] + the data No. [0] [1] to [F] [F] corresponding to the point tables to write + data. Refer to section 10.1.1.

Command	Data No.	Data
$[C][B]$	$[0][1]$ to $[F][F]$	Refer to the following diagram.

When the sub function is changed frequently using communication, set " 1 " to the mode to change only the RAM data in the servo amplifier.
When changing data once or more within an hour, do not write it to the EEP-ROM.
(g) M code

Writes M code of point tables.
Transmits the command [C] [2] + the data No. [0] [1] to [F] [F] corresponding to the point tables to write + data. Refer to section 10.1.1.

Command	Data No.	Data
$[\mathrm{C}][2]$	$[0][1]$ to $[\mathrm{F}][\mathrm{F}]$	Refer to the following diagram.

When the M code is changed frequently using communication, set " 1 " to the mode to change only the RAM data in the servo amplifier.
When changing data once or more within an hour, do not write it to the EEP-ROM.

10.3 Settings equivalent to previous models

You can change the status monitor display and DIO function map to communication commands of MR-J3-T or MR-J2S-CP with "RS-422 communication - Previous model equivalent selection" in [Pr. PT01].

10.3.1 Relevant matters to monitor information

You can use the commands and data Nos. for previous models (MR-J3-T/MR-J2S-CP) as they are.

Command	Data No.	[Pr. PT01]: "0 \qquad (MR-J4 standard)	[Pr. PT01]: " \qquad (equivalent to MR-J3-T)	[Pr. PT01]: "2 \qquad (equivalent to MR-J2S-CP)	[Pr. PT01]: "3 \qquad (equivalent to MR-J2S-CL)
$\begin{aligned} & {[0][1]} \\ & {[0][E]} \\ & {[3][5]} \\ & {[3][E]} \\ & {[8][1]} \end{aligned}$	[0] [0]/[8] [0]	Cumulative feedback pulses	Current position	Current position	Current position
	[0] [1]/[8] [1]	Servo motor speed/ Linear servo motor speed	Command position	Command position	Command position
	[0] [2]/[8] [2]	Droop pulses	Command remaining distance	Command remaining distance	Command remaining distance
	[0] [3]/[8] [3]	Cumulative command pulses	Point table No./ Program No./ Station position No.	Point table No./ Program No./ Station position No.	Point table No./ Program No./ Station position No.
	[0] [4]/[8] [4]	Command pulse frequency	Cumulative feedback pulses	Cumulative feedback pulses	Step No.
	[0] [5]/[8] [5]	Analog speed command voltage/ Analog speed limit voltage	Servo motor speed/ Linear servo motor speed	Servo motor speed/ Linear servo motor speed	Cumulative feedback pulses
	[0] [6]/[8] [6]	Analog speed limit voltage/ Analog speed command voltage	Droop pulses	Droop pulses	Servo motor speed
	[0] [7]/[8] [7]	Regenerative load ratio	Analog override voltage	Override level	Droop pulses
	[0] [8]/[8] [8]	Effective load ratio	Override level	Analog speed limit voltage/ Analog speed command voltage	Override level
	[0] [9]/[8] [9]	Peak load ratio	Analog speed limit voltage/ Analog speed command voltage	Regenerative load ratio	Analog torque limit voltage Analog torque command voltage
	[0] [A]/[8] [A]	Instantaneous torque	Regenerative load ratio	Effective load ratio	Regenerative load ratio
	[0] [B]/[8] [B]	Position within onerevolution	Effective load ratio	Peak load ratio	Effective load ratio
	[0] [C]/[8] [C]	ABS counter	Peak load ratio	Instantaneous torque	Peak load ratio
	[0] [D]/[8] [D]	Load to motor inertia ratio	Instantaneous torque	Position within onerevolution [Lower]	Instantaneous torque
	[0] [E]/[8] [E]	Bus voltage	Position within onerevolution	ABS counter	Position within onerevolution [Lower]
	$\begin{gathered} \hline[0][\mathrm{F}] /[8][\mathrm{F}] \\ \text { (Note) } \end{gathered}$	Load-side encoder cumulative feedback pulses	ABS counter	Load to motor inertia ratio	ABS counter
	$\begin{gathered} {[1][0] /[9][0]} \\ \text { (Note) } \end{gathered}$	Load-side encoder droop pulses	Load to motor inertia ratio	Bus voltage	Load to motor inertia ratio
	$\begin{gathered} {[1][1] /[9][1]} \\ \text { (Note) } \end{gathered}$	Load-side encoder information 1	Bus voltage		Bus voltage
	$\begin{gathered} {[1][2] /[9][2]} \\ \text { (Note) } \\ \hline \end{gathered}$	Load-side encoder information 2			
	[1] [3]/[9] [3]				
	[1] [4]/[9] [4]				
	[1] [5]/[9] [5]				
	$\begin{gathered} {[1][6] /[9][6]} \\ \text { (Note) } \\ \hline \end{gathered}$	Temperature of servo motor thermistor	-		

Command	Data No.	[Pr. PT01]: "0 \qquad (MR-J4 standard)	[Pr. PT01]: "1 (equivalent to MR-J3-T)	[Pr. PT01]: "2 \qquad (equivalent to MR-J2S-CP)	[Pr. PT01]: "3 \square (equivalent to MR-J2S-CL)
$\begin{aligned} & {[0][1]} \\ & {[0][E]} \\ & {[3][5]} \\ & {[3][E]} \\ & {[8][1]} \end{aligned}$	$\begin{gathered} {[1][7] /[9][7]} \\ \text { (Note) } \end{gathered}$	Cumulative feedback pulses (servo motor-side unit)			
	$\begin{gathered} {[1][8] /[9][8]} \\ \text { (Note) } \end{gathered}$	Electrical angle			
	[1] [9]/[9] [9]				
	[1] [A]/[9] [A]				
	[1] [B]/[9] [B]				
	[1] [C]/[9] [C]				
	[1] [D]/[9] [D]				
	$\begin{gathered} \hline[1][E] /[9][E] \\ \text { (Note) } \\ \hline \end{gathered}$	Servo motor-side/load-side position deviation		-	-
	$\begin{gathered} {[1][\mathrm{F}] /[9][\mathrm{F}]} \\ \text { (Note) } \end{gathered}$	Servo motor-side/load-side speed deviation			
	[2] [0]/[A] [0]	Encoder inside temperature			
	[2] [1]/[A] [1]	Settling time			
	[2] [2]/[A] [2]	Oscillation detection frequency			
	[2] [3]/[A] [3]	Number of tough drive operations			
	[2] [4]/[A] [4]				
	[2] [5]/[A] [5]				
	[2] [6]/[A] [6]				
	[2] [7]/[A] [7]				
	[2] [8]/[A] [8]	Unit power consumption			
	[2] [9]/[A] [9]	Unit total power consumption		${ }^{-}$	-
	[2] [A]/[A] [A]	Current position			
	[2] [B]/[A] [B]	Command position			
	[2] [C]/[A] [C]	Command remaining distance			
	[2] [D]/[A] [D]	Point table No./ Program No./ Station position No.			
	[2] [E]/[A] [E]	Step No.			
	[2] [F]/[A] [F]	Analog override voltage			
	[3] [0]/[B] [0]	Override level	仡		
	[3] [1]/[B] [1]				
	[3] [3]/[B] [3]	Cam axis one cycle current value		-	${ }^{-}$
	[3] [4]/[B] [4]	Cam standard position			
	[3] [5]/[B] [5]	Cam axis feed current value	-	-	-
	[3] [6]/[B] [6]	Cam No. in execution			
	[3] [7]/[B] [7]	Cam stroke amount in execution	-	-	-
	[3] [8]/[B] [8]	Main axis current value			
	[3] [9]/[B] [9]	Main axis one cycle current value	-	-	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.

10.3.2 Relevant matters to input/output

(1) Input signal (command [1] [2], [9] [2])
(a) " 0 _ _ $"$ (MR-J4 standard) is set to [Pr. PT01]

Bit	Symbol			
	Data No. [0] [0]	Data No. [0] [1]	Data No. [0] [2]	Data No. [0] [3]
0	SON		MD0	POS00
1	LSP	ABSM	MD1	POS01
2	LSN	ABSR		POS02
3	TL		TCH	POS03
4	TL1		TP0	POS10
5	PC	-	TP1	POS11
6	RES		OVR	POS12
7	CR			POS13
8	SP1			POS20
9	SP2		DOG/SIG	POS21
10	SP3		SPD1	POS22
11	ST1/RS2		SPD2	POS23
12	ST2/RS1		SPD3	POSP
13	CMX1		SPD4	POSN
14	CMX2			STRB
15	LOP			-
16		MSD	LPS	
17		PI1	RT	-
18	EM2/EM1	PI2	RTCDP	
19		PI3		
20	STAB2	CAMC	OVO	
21		CIO	OV1	
22		CI1	OV2	
23		CI2	OV3	
24	TSTP	CI3	DIO	-
25		CLTC	DI1	
26		CPCD	DI2	
27	CDP		DI3	
28	CLD		DI4	-
29	MECR (Note)		DI5	
30			DI6	-
31			DI7	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.
(b) "1 _ _ _" (equivalent to MR-J3-T) is set to [Pr. PT01]

Bit	Symbol		
	Data No. [0] [0]	Data No. [0] [1]	Data No. [0] [2]
0	SON	,	POS00
1	LSP		POS01
2	LSN		POS02
3	TL		POS03
4	TL1		POS10
5	PC	-	POS11
6	RES		POS12
7	CR		POS13
8		-	POS20
9			POS21
10			POS22
11	ST1/RS2		POS23
12	ST2/RS1		POSP
13			POSN
14			STRB
15			
16			-
17	MD0		-
18	DOG/SIG		-
19			-
20		SPD1	
21		SPD2	
22		SPD3	
23	OVR	SPD4	
24	TSTP	DIO	
25	TP0	DI1	
26	TP1	DI2	
27	CDP	DI3	
28		DI4	
29		DI5	
30		DI6	
31		DI7	

(c) " 2 _ _ _" (equivalent to MR-J2S-CP) is set to [Pr. PT01]

Bit	Symbol
	Data No. [0] [0]
0	SON
1	LSP
2	LSN
3	TL
4	TL1
5	PC
6	RES
7	
8	
9	
10	ST1/RS2
11	ST2/RS1
12	
13	
14	
15	

Bit	Symbol
	Data No. [0] [0]
16	EM2/EM1
17	MD0
18	DOG/SIG
19	DI0
20	DI1
21	DI2
22	DI3
23	OVR
24	TSTP
25	TP0
26	TP1
27	CDP
28	
29	DI4
30	TCH
31	

(d) "3 _ _ " (equivalent to MR-J2S-CL) is set to [Pr. PT01]

Bit	Symbol
	Data No. [0] [0]
0	SON
1	LSP
2	LSN
3	TL
4	TL1
5	PC
6	RES
7	
8	
9	LPS
10	ST1/RS2
11	
12	
13	
14	
15	

Bit	Symbol
	Data No. [0] [0]
16	EM2/EM1
17	MD0
18	DOG/SIG
19	DI0
20	DI1
21	DI2
22	DI3
23	OVR
24	TSTP
25	TP0
26	TP1
27	CDP
28	PI1
29	PI2
30	PI3
31	

(2) Output signal (command [1] [2])
(a) " 0 _ _ $"$ " (MR-J4 standard) is set to [Pr. PT01]

Bit	Symbol			
	Data No. [0] [0]	Data No. [0] [1]	Data No. [0] [2]	Data No. [0] [3]
0	RD	-	-	MCD00
1	SA			MCD01
2	ZSP			MCD02
3	TLC		CPO	MCD03
4	VLC		ZP	MCD10
5	INP		POT	MCD11
6			PUS	MCD12
7	WNG		MEND	MCD13
8	ALM			ACD0
9	OP			ACD1
10	MBR			ACD2
11	DB (Note)			ACD3
12	ALCD0		PED	PRQ0
13	ALCD1			PRQ1
14	ALCD2			
15	BWNG			
16				-
17			ALMWNG	
18			BW9F	
19		MSDH		
20		MSDL		
21		SOUT		
22		OUT1		
23		OUT2		
24		OUT3	PT0/PS0	
25	CDPS	CAMS	PT1/PS1	
26	CLDS (Note)	CLTS	PT2/PS2	
27	ABSV	CLTSM	PT3/PS3	
28		CLTS	PT4/PS4	
29			PT5/PS5	
30			PT6/PS6	
31	MTTR (Note)		PT7/PS7	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.
(b) "1 _ _ _" (equivalent to MR-J3-T) is set to [Pr. PT01]

Bit	Symbol		
	Data No. [0] [0]	Data No. [0] [1]	Data No. [0] [2]
0	RD	ABSB0	MCD00
1		ABSB1	MCD01
2	ZSP	ABST	MCD02
3	TLC		MCD03
4		ALMWNG	MCD10
5	INP	BW9F	MCD11
6			MCD12
7	WNG		MCD13
8	ALM		ACD0
9		-	ACD1
10	MBR		ACD2
11	DB (Note)		ACD3
12			PRQ0
13		-	PRQ1
14			
15	BWNG		
16	CPO		
17	ZP		
18	POT		
19	PUS		
20			
21			
22			-
23			-
24		PT0/PS0	
25	CDPS	PT1/PS1	
26		PT2/PS2	
27		PT3/PS3	
28	MEND	PT4/PS4	
29		PT5/PS5	
30		PT6/PS6	
31		PT7/PS7	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.
(c) " 2 _ _ $"$ " (equivalent to MR-J2S-CP) is set to [Pr. PT01]

Bit	Symbol	Bit	Symbol
	Data No. [0] [0]		Data No. [0] [0]
0	RD	16	CPO
1		17	ZP
2		18	POT
3	TLC	19	PUS
4		20	PT0/PS0
5	INP	21	PT1/PS1
6		22	PT2/PS2
7	WNG	23	PT3/PS3
8	ALM	24	PT4/PS4
9		25	
10	MBR	26	
11	DB (Note)	27	
12		28	MEND
13		29	
14		30	
15	BWNG	31	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.
(d) "3 _ _ " (equivalent to MR-J2S-CL) is set to [Pr. PT01]

Bit	Symbol
	Data No. [0] [0]
0	RD
1	
2	TLC
3	INP
4	
5	WNG
6	ALM
7	MBR
8	DB (Note)
9	
10	
11	
12	BWNG
13	
14	
15	

Bit	Symbol
	Data No. [0] [0]
16	ZP
17	POT
18	PUS
19	OUT1
20	OUT2
21	OUT3
22	SOUT
23	PED
24	
25	
26	
27	
28	
29	
30	
31	

Note. This is not available with the MR-J4-03A6-RJ servo amplifier.

11. MR-D01 EXTENSION I/O UNIT

11. MR-D01 EXTENSION I/O UNIT

MR-D01 is an extension I/O unit that can extend the input/output signals of MR-J4-_A_-RJ servo amplifiers.

| POINT |
| :---: | :---: |
| OMR-D01 cannot be used with the MR-J4-_(-RJ) drive unit. |
| OMR-D01 cannot be used with MR-J4-03A6(-RJ) servo amplifiers. |

11.1 Function block diagram

The function block diagram of this servo is shown below.
The following illustration is an example of MR-J4-20A-RJ.

Note 1. The built-in regenerative resistor is not provided for MR-J4-10A-RJ.
2. For power supply specifications, refer to section 1.3 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
3. Servo amplifiers MR-J4-70A-RJ or more have a cooling fan.
4. MR-J4 servo amplifier has P3 and P4 in the upstream of the inrush current suppression circuit. They are different from P1 and P2 of MR-J3 servo amplifiers.
5. The power factor improving AC reactor can also be used. In this case, the power factor improving DC reactor cannot be used. When not using the power factor improving DC reactor, short P3 and P4.

11.2 Structure

11.2.1 Parts identification

(1) Interface

The following figure shows the interface of when MR-J4-20A-RJ and MR-D01 have been connected. For servo amplifiers, refer to section 1.7 .1 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".

(2) Rating plate

The following shows an example of the rating plate for explanation of each item.

11.2.2 Installation and removal of the MR-D01 extension I/O unit

Before installing or removing MR-D01, turn off the power and wait for 15 minutes
or more until the charge lamp turns off. Then, confirm that the voltage between P+
and N- is safe with a voltage tester and others. Otherwise, an electric shock may
occur. In addition, when confirming whether the charge lamp is off or not, always
confirm it from the front of the servo amplifier.

Avoid installing and removing MR-D01 repeatedly. Any contact failure of the connector may be caused.
-Avoid unsealing MR-D01 to be free of dust and dirt against the connector except installing. Make sure to use the pre-packing when storing.
-Avoid using MR-D01 of which the hook and knobs for fixing are damaged. Any contact failure of the connector may be caused.
A CAUTION When mounting/dismounting MR-D01 to/from MR-J4-500A-RJ to MR-J4-22KA-RJ and MR-J4-350A4-RJ to MR-J4-22KA4-RJ servo amplifiers, avoid dropping out the installing screw inside it. Otherwise, it may cause a malfunction.
OWhen mounting MR-D01 to MR-J4-500A-RJ to MR-J4-22KA-RJ and MR-J4-350A4-RJ to MR-J4-22KA4-RJ servo amplifiers, avoid damaging the control board by the fixing plate. Otherwise, it may cause a malfunction.
Make sure to tighten MR-D01 with the enclosed installing screws when installing.

POINT

The internal circuits of the servo amplifier and MR-D01 may be damaged by static electricity. Always take the following precautions.

- Ground human body and work bench.
- Do not touch the conductive areas, such as connector pins and electrical parts, directly by hand.
(1) For MR-J4-200A(4)-RJ or less and MR-J4-350A-RJ
(a) Installation of MR-D01

1) Remove the covers of CN7 and CN9 connectors. Make sure to store the removed cover.
2) Find the guide hole on the side of the servo amplifier. To the guide hole, insert the MR-D01's guide pins.
3) Push the four corners of the side of MR-D01 simultaneously to the servo amplifier until the four knobs click so that the CN7 connector is connected straight.
4) Tighten the unit with the enclosed installing screw (M4).
5) Remove the installing screw.
6) Keep pushing the knobs (a) , b), c), d)) and pull out MR-D01 to the arrow direction. Avoid pulling out MR-D01 while it is tightened with the installation screw.

[^6](2) MR-J4-500A-RJ to MR-J4-700A-RJ and MR-J4-350A4-RJ to MR-J4-700A4-RJ
(a) Removal of the side cover

1) Keep pushing the knobs (a), b)) and pull out the side cover to the arrow direction.
(b) Installation of MR-D01
2) Find the guide hole on the side of the servo amplifier. To the guide hole, insert the MR-D01's guide pins.

3) Push the four corners of the side of MR-D01 simultaneously to the servo amplifier until the four knobs click so that the CN7 connector is connected straight.
4) Tighten the unit with the enclosed installing screw (M4).
(c) Removal of MR-D01

5) Remove the installing screw.
6) Keep pushing the knobs (a) ,b), c), d)) and pull out MR-D01 to the arrow direction. Avoid pulling out MR-D01 while it is tightened with the installation screw.
(d) Installation of the side cover

7) Insert the side cover setting tabs into the sockets a) of the servo amplifier.
8) Push the side cover at the supporting point a) until the knobs click.
(3) MR-J4-11KA(4)-RJ to MR-J4-22KA(4)-RJ

The installing screw holes for the MR-J4-11KA(4)-RJ to MR-J4-22KA(4)-RJ are covered and the screw holes for mounting are not shown at shipping. When installing the unit for the first time, cut off the part a) of the case after removing the side cover.
When cutting off the part a), avoid damaging the case of the servo amplifier. After cutting off it, inside of the servo amplifier has been exposed even though the side cover and the unit are installed. Avoid unwanted parts from entering through the opened area into the servo amplifier.
For installing or removing the unit, refer to (2) in this section. The side cover structure is the same for MR-J4-11KA(4)-RJ to MR-J4-22KA(4)-RJ and for this unit. Install or remove the side cover with the same way as for the unit.

11.3 Configuration including peripheral equipment

I. CAUTION | Connecting a servo motor of the wrong axis to $\mathrm{U}, \mathrm{V}, \mathrm{W}$, or CN 2 of the servo |
| :---: |
| amplifier may cause a malfunction. |

POINT

Equipment other than the servo amplifier and servo motor are optional or recommended products.

The diagram shows MR-J4-20A-RJ.

Note 1. The power factor improving AC reactor can also be used. In this case, the power factor improving DC reactor cannot be used. When not using the power factor improving DC reactor, short P3 and P4.
2. A 1-phase 200 V AC to 240 V AC power supply may be used with the servo amplifier of MR-J4-70A-RJ or less. For 1-phase 200 V AC to 240 V AC, connect the power supply to L1 and L3. Leave L2 open. For power supply specifications, refer to section 1.3 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
3. Depending on the main circuit voltage and operation pattern, a bus voltage may drop, causing dynamic brake deceleration during forced stop deceleration. When dynamic brake deceleration is not required, delay the time to turn off the magnetic contactor.
4. This is for the MR-J4-_A-RJ servo amplifier. The MR-J4-_A servo amplifier does not have the CN2L connector. When using an MR-J4-_A-RJ servo amplifier in the linear servo system or in the fully closed loop system, connect an external encoder to this connector. Refer to Table 1.1 and "Linear Encoder Instruction Manual" for the compatible external encoders.
5. Always connect between $P+$ and D terminals. When using the regenerative option, refer to section 11.2.

11.4 Installation direction and clearances

| The equipment must be installed in the specified direction. Otherwise, it may |
| :--- | :--- |
| cause malfunction. |
| Leave specified clearances between the servo amplifier and cabinet walls or other |
| equipment. Otherwise, it may cause malfunction. |

(1) Installation clearances of the servo amplifier
(a) Installation of one servo amplifier

Note 1. For the 11 kW to 22 kW servo amplifiers, the clearance between the bottom and the ground will be 120 mm or more.
2. For the MR-J4-500A-RJ, the clearance between the left side and wall will be 25 mm or more.
(b) Installation of two or more servo amplifiers

POINT

Close mounting is possible depending on the capacity of the servo amplifier. For the possibility of close mounting, refer to section 1.3 of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
OWhen mounting the servo amplifiers closely, do not install the servo amplifier whose depth is larger than that of the left side servo amplifier since CNP1, CNP2, and CNP3 connectors cannot be disconnected.

Leave a large clearance between the top of the servo amplifier and the cabinet walls, and install a cooling fan to prevent the internal temperature of the cabinet from exceeding the environmental conditions.
When mounting the servo amplifiers closely, leave a clearance of 1 mm between the adjacent servo amplifiers in consideration of mounting tolerances. In this case, operate the servo amplifiers at the ambient temperature of $0{ }^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ or at 75% or less of the effective load ratio.

Note 1. For the 11 kW to 22 kW servo amplifiers, the clearance between the bottom and the ground will be 120 mm or more.
2. When you install MR-J4-500A-RJ on the right side, the clearance between the left side and the wall will be 25 mm or more.
(2) Others

When using heat generating equipment such as the regenerative option, install them with full consideration of heat generation so that the servo amplifier is not affected.
Install the servo amplifier on a perpendicular wall in the correct vertical direction.
11.5 Signals and wiring

POINT

Input signals of the servo amplifier are valid even when the MR-D01 has been connected. When the same input devices have been assigned to the servo amplifier and MR-D01 and both input signals are turned on, the input signal that has turned on first is enabled. Even though turning off one of the input signals that have been turned on is attempted, the input signal cannot be turned off. Refer to the following table for details. The following table shows ST1 (Forward rotation start) as an example.

Device	(Note) Servo amplifier	(Note) MR-D01	Servo motor
ST1	0	0	Stop
	0	1	Forward rotation
	1	0	Forward rotation
	1	1	Forward rotation

[^7]1: On

11.5.1 I/O signal connection diagram

(1) Point table method

POINT

Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with [Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)
(a) Sink I/O interface

Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (marked Θ) of the servo amplifier to the protective earth (PE) of the cabinet.
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will malfunction and will not output signals, disabling EM2 (Forced stop 2) and other protective circuits.
3. The forced stop switch (normally closed contact) must be installed.
4. Supply $24 \mathrm{VDC} \pm 10 \%$ to interfaces from outside. The total current capacity of these power supplies must be 500 mA or lower. 500 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 3.9.2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" that gives the current value necessary for the interface. A 24 V DC power supply can be used for both input signal and output signal.
5. When starting operation, always turn on EM2 (Forced stop 2), LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end). (Normally closed contact)
6. ALM (Malfunction) turns on in normal alarm-free condition. (Normally closed contact)
7. The pins with the same signal name are connected in the servo amplifier.
8. TLA will be available when TL (External torque limit selection) is enabled with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46]. (Refer to section 3.6.1 (5) of "MR-J4-A_(-RJ) Servo Amplifier Instruction Manual".)
9. Use SW1DNC MRC2-_. (Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" section 11.7.)
10. Controllers or parameter units can also be connected via the CN3 connector with the RS-422/RS-485 communication. Note that using the USB communication function (CN5 connector) prevents the RS-422/RS-485 communication function (CN3 connector) from being used, and vice versa. They cannot be used together.

11. Use an external power supply when inputting a negative voltage.
12. When not using the STO function, attach the short-circuit connector came with a servo amplifier.
13. Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent an unexpected restart of the servo amplifier.
14. This diagram shows sink I/O interface.
15. The devices can be changed with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
16. Output devices are not assigned by default. Assign the output devices with [Pr. PD47] as necessary.
17. Recommended device assignments are shown. The devices can be changed by [Pr. PD23] to [Pr. PD26], and [Pr. PD28].
18. DI2 and DI3 are assigned to the CN1-10 and CN1-35 pins by default. When connecting a manual pulse generator, change them with [Pr. PD44] and [Pr. PD46]. Refer to section 9.1 for details of the manual pulse generator.
19. Supply + of $24 \mathrm{DC} V$ to OPC (Power input for open-collector sink interface) when input devices are assigned to the CN1-10 pin and the CN-35 pin. They cannot be used with source input interface. For the positioning mode, input devices (DI2 and DI3) are assigned with the initial values.
20. Supply $24 \mathrm{~V} C \pm 10 \%$ to interfaces of the MR-D01 from outside. The total current capacity of these power supplies must be 800 mA or lower. 800 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. For the current required for the interface, refer to section 3.8 .2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
21. As the 24 V DC for the input/output signals, one 24 V DC power supply can be used to supply to the servo amplifier and MRD01. In this case, select an appropriate power supply capacity depending on the number of points of the input/output signals to be used.
22. The CN1-2 pin and CN20-2 pin are exclusive. The CN1-2 pin is set by default. Select this item with [Pr. Po11].
23. The CN1-27 pin and CN20-12 pin are exclusive. The CN1-27 pin is set by default. Select this item with [Pr. Po11].
24. OTLA will be available when TL (External torque limit selection) is enabled with [Pr. Po02] to [Pr. Po07]. (Refer to section 11.5.3 (6).)
25. The devices can be changed by [Pr. Po02] to [Pr. Po07].
(b) Source I/O interface

POINT

For notes, refer to (1) (a) of this section.

11. MR-D01 EXTENSION I/O UNIT

(2) Point table method in the BCD input positioning operation

POINT
Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with
[Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)

(a) When using a digital switch

1) Sink I/O interface

Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (marked Θ) of the servo amplifier to the protective earth (PE) of the cabinet.
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will malfunction and will not output signals, disabling EM2 (Forced stop 2) and other protective circuits.
3. The forced stop switch (normally closed contact) must be installed.
4. Supply $24 \mathrm{~V} \mathrm{DC} \pm 10 \%$ to interfaces from outside. The total current capacity of these power supplies must be 500 mA or lower. 500 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 3.9 .2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" that gives the current value necessary for the interface. A 24 V DC power supply can be used for both input signal and output signal.
5. When starting operation, always turn on EM2 (Forced stop 2), LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end). (Normally closed contact)
6. ALM (Malfunction) turns on in normal alarm-free condition. (Normally closed contact)
7. The pins with the same signal name are connected in the servo amplifier.
8. TLA will be available when TL (External torque limit selection) is enabled with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46]. (Refer to section 3.6.1 (5) of "MR-J4-A_(-RJ) Servo Amplifier Instruction Manual".)
9. Use SW1DNC MRC2-_. (Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" section 11.7.)
10. Controllers or parameter units can also be connected via the CN3 connector with the RS-422/RS-485 communication. Note that using the USB communication function (CN5 connector) prevents the RS-422/RS-485 communication function (CN3 connector) from being used, and vice versa. They cannot be used together.

11. Use an external power supply when inputting a negative voltage.
12. When not using the STO function, attach the short-circuit connector came with a servo amplifier.
13. Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent an unexpected restart of the servo amplifier.
14. This diagram shows sink I/O interface.
15. The devices can be changed with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
16. Output devices are not assigned by default. Assign the output devices with [Pr. PD47] as necessary.
17. Recommended device assignments are shown. The devices can be changed by [Pr. PD23] to [Pr. PD26], and [Pr. PD28].
18. DI2 and DI3 are assigned to the CN1-10 and CN1-35 pins by default. When connecting a manual pulse generator, change them with [Pr. PD44] and [Pr. PD46]. Refer to section 9.1 for details of the manual pulse generator.
19. Supply + of $24 \mathrm{DC} V$ to OPC (Power input for open-collector sink interface) when input devices are assigned to the CN1-10 pin and the CN-35 pin. They cannot be used with source input interface. For the positioning mode, input devices (DI2 and DI3) are assigned with the initial values.
20. Supply $24 \mathrm{~V} C \pm 10 \%$ to interfaces of the MR-D01 from outside. The total current capacity of these power supplies must be 800 mA or lower. 800 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. For the current required for the interface, refer to section 3.8 .2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
21. As the 24 V DC for the input/output signals, one 24 V DC power supply can be used to supply to the servo amplifier and MRD01. In this case, select an appropriate power supply capacity depending on the number of points of the input/output signals to be used.
22. The CN1-2 pin and CN20-2 pin are exclusive. The CN1-2 pin is set by default. Select this item with [Pr. Po11].
23. The CN1-27 pin and CN20-12 pin are exclusive. The CN1-27 pin is set by default. Select this item with [Pr. Po11].
24. OTLA will be available when TL (External torque limit selection) is enabled with [Pr. Po02] to [Pr. Po07]. (Refer to section 11.5.3 (6).)
25. The devices can be changed by [Pr. Po02] to [Pr. Po07].
2) Source I/O interface

Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with [Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)
(b) When using programmable controllers

1) Sink I/O interface

Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (marked Θ) of the servo amplifier to the protective earth (PE) of the cabinet.
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will malfunction and will not output signals, disabling EM2 (Forced stop 2) and other protective circuits.
3. The forced stop switch (normally closed contact) must be installed.
4. Supply $24 \mathrm{~V} \mathrm{DC} \pm 10 \%$ to interfaces from outside. The total current capacity of these power supplies must be 500 mA or lower. 500 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 3.9 .2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" that gives the current value necessary for the interface. A 24 V DC power supply can be used for both input signal and output signal.
5. When starting operation, always turn on EM2 (Forced stop 2), LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end). (Normally closed contact)
6. ALM (Malfunction) turns on in normal alarm-free condition. (Normally closed contact)
7. The pins with the same signal name are connected in the servo amplifier.
8. TLA will be available when TL (External torque limit selection) is enabled with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46]. (Refer to section 3.6.1 (5) of "MR-J4-A_(-RJ) Servo Amplifier Instruction Manual".)
9. Use SW1DNC MRC2-_. (Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" section 11.7.)
10. Controllers or parameter units can also be connected via the CN3 connector with the RS-422/RS-485 communication. Note that using the USB communication function (CN5 connector) prevents the RS-422/RS-485 communication function (CN3 connector) from being used, and vice versa. They cannot be used together.

11. Use an external power supply when inputting a negative voltage.
12. When not using the STO function, attach the short-circuit connector came with a servo amplifier.
13. Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent an unexpected restart of the servo amplifier.
14. This diagram shows sink $1 / O$ interface.
15. The devices can be changed with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
16. Output devices are not assigned by default. Assign the output devices with [Pr. PD47] as necessary.
17. Recommended device assignments are shown. The devices can be changed by [Pr. PD23] to [Pr. PD26], and [Pr. PD28].
18. DI2 and DI3 are assigned to the CN1-10 and CN1-35 pins by default. When connecting a manual pulse generator, change them with [Pr. PD44] and [Pr. PD46]. Refer to section 9.1 for details of the manual pulse generator.
19. Supply + of $24 \mathrm{DC} V$ to OPC (Power input for open-collector sink interface) when input devices are assigned to the CN1-10 pin and the CN-35 pin. They cannot be used with source input interface. For the positioning mode, input devices (DI2 and DI3) are assigned with the initial values.
20. Supply $24 \mathrm{~V} C \pm 10 \%$ to interfaces of the MR-D01 from outside. The total current capacity of these power supplies must be 800 mA or lower. 800 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I / O points. For the current required for the interface, refer to section 3.8 .2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
21. As the 24 V DC for the input/output signals, one 24 V DC power supply can be used to supply to the servo amplifier and MRD01. In this case, select an appropriate power supply capacity depending on the number of points of the input/output signals to be used.
22. The CN1-2 pin and CN20-2 pin are exclusive. The CN1-2 pin is set by default. Select this item with [Pr. Po11].
23. The CN1-27 pin and CN20-12 pin are exclusive. The CN1-27 pin is set by default. Select this item with [Pr. Po11].
24. OTLA will be available when TL (External torque limit selection) is enabled with [Pr. Po02] to [Pr. Po07]. (Refer to section 11.5.3 (6).)
25. The devices can be changed by [Pr. Po02] to [Pr. Po07].

2) Source I/O interface

POINT
 For notes, refer to (2) (b) 1) of this section.

(3) Program method

POINT

Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with [Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)
(a) Sink I/O interface

Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (marked \oplus) of the servo amplifier to the protective earth (PE) of the cabinet.
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will malfunction and will not output signals, disabling EM2 (Forced stop 2) and other protective circuits.
3. The forced stop switch (normally closed contact) must be installed.
4. Supply $24 \mathrm{~V} \mathrm{DC} \pm 10 \%$ to interfaces from outside. The total current capacity of these power supplies must be 500 mA or lower. 500 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 3.9.2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" that gives the current value necessary for the interface. A 24 V DC power supply can be used for both input signal and output signal.
5. When starting operation, always turn on EM2 (Forced stop 2), LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end). (Normally closed contact)
6. ALM (Malfunction) turns on in normal alarm-free condition. (Normally closed contact)
7. The pins with the same signal name are connected in the servo amplifier.
8. TLA will be available when TL (External torque limit selection) is enabled with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46]. (Refer to section 3.6.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
9. Use SW1DNC MRC2-_. (Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" section 11.7.)
10. Controllers or parameter units can also be connected via the CN3 connector with the RS-422/RS-485 communication. Note that using the USB communication function (CN5 connector) prevents the RS-422/RS-485 communication function (CN3 connector) from being used, and vice versa. They cannot be used together.

11. Use an external power supply when inputting a negative voltage.
12. When not using the STO function, attach the short-circuit connector came with a servo amplifier.
13. Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent an unexpected restart of the servo amplifier.
14. This diagram shows sink I/O interface.
15. The devices can be changed with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
16. Output devices are not assigned by default. Assign the output devices with [Pr. PD47] as necessary.
17. Recommended device assignments are shown. The devices can be changed by [Pr. PD23] to [Pr. PD26], and [Pr. PD28].
18. DI2 and DI3 are assigned to the CN1-10 and CN1-35 pins by default. When connecting a manual pulse generator, change them with [Pr. PD44] and [Pr. PD46]. Refer to section 9.1 for details of the manual pulse generator.
19. Supply + of 24 DC V to OPC (Power input for open-collector sink interface) when input devices are assigned to the CN1-10 pin and the CN-35 pin. They cannot be used with source input interface. For the positioning mode, input devices (DI2 and DI3) are assigned with the initial values.
20. Supply $24 \mathrm{~V} D C \pm 10 \%$ to interfaces of the MR-D01 from outside. The total current capacity of these power supplies must be 800 mA or lower. 800 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. For the current required for the interface, refer to section 3.8 .2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
21. As the 24 V DC for the input/output signals, one 24 V DC power supply can be used to supply to the servo amplifier and MRD01. In this case, select an appropriate power supply capacity depending on the number of points of the input/output signals to be used.
22. The CN1-2 pin and CN20-2 pin are exclusive. The CN1-2 pin is set by default. Select this item with [Pr. Po11].
23. The CN1-27 pin and CN20-12 pin are exclusive. The CN1-27 pin is set by default. Select this item with [Pr. Po11].
(b) Source I/O interface

POINT

For notes, refer to (3) (a) of this section.

(4) Indexer method

POINT

Use MD1 (Operation mode selection 2) in the indexer method. When using MD1 with the servo amplifier, assign MD1 (Operation mode selection 2) to the CN118 pin with [Pr. PD10]. When using MD1 with the MR-D01, assign MD1 (Operation mode selection 2) to the CN10-36 pin with [Pr. Po07].
Assign the following output devices to CN1-22, CN1-23, and CN1-25 pins with [Pr. PD23], [Pr. PD24], and [Pr. PD26].
CN1-22: CPO (Rough match)
CN1-23: ZP (Home position return completion)
CN1-25: MEND (Travel completion)
(a) Sink I/O interface

Note 1. To prevent an electric shock, always connect the protective earth (PE) terminal (marked Θ) of the servo amplifier to the protective earth (PE) of the cabinet.
2. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will malfunction and will not output signals, disabling EM2 (Forced stop 2) and other protective circuits.
3. The forced stop switch (normally closed contact) must be installed.
4. Supply $24 \mathrm{~V} \mathrm{DC} \pm 10 \%$ to interfaces from outside. The total current capacity of these power supplies must be 500 mA or lower. 500 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. Refer to section 3.9.2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" that gives the current value necessary for the interface. A 24 V DC power supply can be used for both input signal and output signal.
5. When starting operation, always turn on EM2 (Forced stop 2), LSP (Forward rotation stroke end) and LSN (Reverse rotation stroke end). (Normally closed contact)
6. ALM (Malfunction) turns on in normal alarm-free condition. (Normally closed contact)
7. The pins with the same signal name are connected in the servo amplifier.
8. TLA will be available when TL (External torque limit selection) is enabled with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46]. (Refer to section 3.6.1 (5) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".)
9. Use SW1DNC MRC2-_. (Refer to "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual" section 11.7.)
10. Controllers or parameter units can also be connected via the CN3 connector with the RS-422/RS-485 communication. Note that using the USB communication function (CN5 connector) prevents the RS-422/RS-485 communication function (CN3 connector) from being used, and vice versa. They cannot be used together.

11. When not using the STO function, attach the short-circuit connector came with a servo amplifier.
12. Configure a circuit to turn off EM2 when the main circuit power is turned off to prevent an unexpected restart of the servo amplifier.
13. This diagram shows sink I/O interface.
14. The devices can be changed with [Pr. PD04], [Pr. PD06], [Pr. PD08], [Pr. PD10], [Pr. PD12], [Pr. PD14], [Pr. PD18], [Pr. PD20], [Pr. PD22], [Pr. PD44], and [Pr. PD46].
15. Output devices are not assigned by default. Assign the output devices with [Pr. PD47] as necessary.
16. Recommended device assignments are shown. The devices can be changed by [Pr. PD23] to [Pr. PD26], and [Pr. PD28].
17. DI2 and DI3 are assigned to the CN1-10 and CN1-35 pins by default. When connecting a manual pulse generator, change them with [Pr. PD44] and [Pr. PD46]. Refer to section 9.1 for details of the manual pulse generator.
18. Supply + of 24 DC V to OPC (Power input for open-collector sink interface) when input devices are assigned to the CN1-10 pin and the CN-35 pin. They cannot be used with source input interface. For the positioning mode, input devices (DI2 and DI3) are assigned with the initial values.
19. Supply 24 V DC $\pm 10 \%$ to interfaces of the MR-D01 from outside. The total current capacity of these power supplies must be 800 mA or lower. 800 mA is the value applicable when all I/O signals are used. The current capacity can be decreased by reducing the number of I/O points. For the current required for the interface, refer to section 3.8.2 (1) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
20. As the 24 V DC for the input/output signals, one 24 V DC power supply can be used to supply to the servo amplifier and MRD01. In this case, select an appropriate power supply capacity depending on the number of points of the input/output signals to be used.
21. The CN1-27 pin and CN20-12 pin are exclusive. The CN1-27 pin is set by default. Select with [Pr. Po11].
22. When using Operation mode selection 2 (MD1) in the unit, change [Pr. PD10] to "2108" to assign Operation mode selection 2 (MD1) to the CN1-18 pin in advance.
(b) Source I/O interface

POINT
For notes, refer to (4) (a) of this section.

11.5.2 Connectors and pin assignment

POINT

The pin assignment of the connectors is as viewed from the cable connector wiring section.
The CN30 connector is for manufacturer setting. This connector is attached on the MR-D01 servo amplifier, but not for use.
-For the pin assignment of the CN10 connector, refer to (2) in this section.

For details of each signal (device), refer to section 11.5.3.
(1) Pin assignment

The following is the front view of MR-J4-10A-RJ or MR-D01.

For the pin assignment, refer to (3) of this section.
(2) Pin assignment of the CN10 connector

Pin No.	(Note 1) I/O	(Note 2) I/O signals in control modes				Related parameter
		CP	BCD	CL	PS	
1	1	DIO	POS00	DIO	DIO	
2	I	DI1	POS01	DI1	DI1	
3	I	DI2	POS02	DI2	DI2	
4	I	DI3	POS03	DI3	DI3	
5	I	DI4	POS10	DI4	D14	
6	1	DI5	POS11	DI5	DI5	
7	I	DI6	POS12	DI6	DI6	
8	I	DI7	POS13	DI7	DI7	
9	1	\square^{-}	POS20	-	-	
10	I	-	POS21	${ }^{2}$	${ }^{-}$	
11	I	${ }^{2}$	POS22	-	-	
12	I	${ }^{\text {a }}$	POS23	${ }^{-}$	${ }^{-}$	
13	-	DICOMD	DICOMD	DICOMD	DICOMD	
14	,	DICOMD	DICOMD	DICOMD	DICOMD	
15	I	${ }^{\text {- }}$	POSP	-	${ }^{\text {- }}$	
16	I	${ }^{2}$	POSN	-	-	
17	I	${ }^{\text {a }}$	STRB		-	
18	I	${ }^{-}$	SPD1	${ }^{-}$	${ }^{2}$	Pr. Po27
19	I	-	SPD2	-	${ }^{-}$	Pr. Po27
20	I	$\mathrm{SON}^{\text {a }}$	SPD3	$\mathrm{SON}^{\text {chen }}$	$\mathrm{SON}^{\text {cosen }}$	Pr. Po28
21	I	SON	SON	SON	SON	Pr. Po02
22	0	ACD0	ACD0	ACD0	ACD0	
23	0	ACD1	ACD1	ACD1	ACD1	
24	0	ACD2	ACD2	ACD2	ACD2	
25	0	ACD3	ACD3	ACD3	ACD3	
26	I	RES	RES	RES	RES	Pr. Po02
27	I	TL	TL	TL	TL	Pr. Po03
28	I	TL1	TL1	TL1	TL1	Pr. Po03
29	I	TP0	TP0	TP0	${ }^{\text {c }}$	Pr. Po04
30	I	TP1	TP1	TP1	-	Pr. Po04
31	1	OVR	OVR	OVR	S	Pr. Po05
32	I	MD0	MD0	MD0	MD0	Pr. Po05
33	I	TSTP	TSTP	TSTP	${ }^{\text {P }}$	Pr. Po06
34	I	PC	PC	PC	PC	Pr. Po06
35	I	ST1	ST1	ST1	ST1	Pr. Po07
36	I	ST2	ST2	ST2	MD1	Pr. Po07
37	-	DOCOMD	DOCOMD	DOCOMD	DOCOMD	
38	0	MCD00	-	OUT1	PS0	
39	0	MCD01	-	OUT2	PS1	
40	0	MCD02	-	OUT3	PS2	
41	O	MCD03	-	-	PS3	
42	0	MCD10	-	-	PS4	
43	O	MCD11	$\mathrm{S}^{\text {a }}$	-	PS5	
44	0	MCD12	PRQ1	-	PS6	
45	0	MCD13	PRQ2	$\mathrm{S}^{\text {PS }}$	PS7	
46	O	PUS	PUS	PUS	$\mathrm{S}^{\text {che }}$	Pr. Po08
47	O	MEND	MEND	MEND	MEND	Pr. Po08
48	0	CPO	CPO	CPO	CPO	Pr. Po09
49	0	INP	INP	INP	INP	Pr. Po09
50		SD	SD	SD	SD	

Note 1. I: Input signal, O: Output signal
2. CP: Positioning mode (point table method)

BCD: Positioning mode (point table method in the BCD input positioning operation)
CL: Positioning mode (program method)
PS: Positioning mode (indexer method)

11. MR-D01 EXTENSION I/O UNIT

11.5.3 Signal (device) explanations

This section describes the signals (devices) of the MR-D01 extension I/O unit.
The connector pin No. column in the table lists the pin Nos. which devices are assigned to by default.
For the I/O interfaces (symbols in the I/O division column in the table), refer to section 2.5. The symbols in the control mode field of the table shows the followings.
CP: Positioning mode (point table method)
$B C D$: Positioning mode (point table method in the BCD input positioning operation)
CL: Positioning mode (program method)
PS: Positioning mode (indexer method)
" O " and " Δ " of the table shows the followings.
O: Usable device by default.
Δ : Usable device by setting the following parameters. [Pr. Po02] to [Pr. Po09], [Pr. Po27], and [Pr. Po28]
(1) I/O device
(a) Input device

Device	Symbol	Connector pin No.	Function and application	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ \text { division } \end{gathered}$	Control mode			
					0	号	Ј	ロ
Operation mode selection 2	MD1		Select an operation mode with combinations of MD0 and MD1. For the combinations, refer to the table of Operation mode 1.	DI-1				\triangle
Forward rotation start	ST1	CN10-35	Same as the one of when used with only a servo amplifier. Refer to section 2.3 (1) (a).	DI-1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Reverse rotation start	ST2	CN10-36		DI-1	\bigcirc	\bigcirc	\bigcirc	-
Temporary stop/restart	TSTP	CN10-33		DI-1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Proximity dog	DOG			DI-1	\triangle	\triangle	\triangle	\bigcirc
External limit/Rotation direction decision/Automa tic speed selection	SIG			DI-1	$\overline{ }$	\checkmark	\checkmark	\triangle
Manual pulse generator multiplication 1	TP0	CN10-29		DI-1	\bigcirc	\bigcirc	\bigcirc	\rangle
Manual pulse generator multiplication 2	TP1	CN10-30		DI-1	\bigcirc	\bigcirc	\bigcirc	\checkmark
Analog override selection	OVR	CN10-31		DI-1	\bigcirc	\bigcirc	\bigcirc	
Teach	TCH			DI-1	\triangle			
Program input 1	PI1			DI-1			\triangle	
Program input 2	PI2			DI-1			\triangle	
Program input 3	PI3			DI-1			\triangle	
Current position latch input	LPS			DI-1			\triangle	\bigcirc
Point table No. 1/Program No. selection 1/Next station No. selection 1	DIO	CN10-1		DI-1	\bigcirc	\rangle	\bigcirc	\bigcirc
Point table No. 2/Program No. selection $2 / \mathrm{Next}$ station No. selection 2	DI1	CN10-2		DI-1	\bigcirc	$\$ & \bigcirc	\bigcirc	
Point table No. 3/Program No. selection 3/Next station No. selection 3	DI2	CN10-3		DI-1	\bigcirc	$\$ & \bigcirc	\bigcirc	
Point table No. 4/Program No. selection 4/Next station No. selection 4	DI3	CN10-4		DI-1	\bigcirc	$\$ & \bigcirc	\bigcirc	
Point table No. 5/Program No. selection $5 / \mathrm{Next}$ station No. selection 5	DI4	CN10-5		DI-1	\bigcirc	$\$ & \bigcirc	\bigcirc	
Point table No. 6/Program No. selection $6 / \mathrm{Next}$ station No. selection 6	DI5	CN10-6		DI-1	\bigcirc	$\$ & \bigcirc	\bigcirc	

11. MR-D01 EXTENSION I/O UNIT

Device	Symbol	Connector pin No.	Function and application	$\begin{array}{\|c\|} \text { 1/O } \\ \text { division } \end{array}$	Control mode			
					0	O-	Ј	の
Point table No. 7/Program No. selection 7/Next station No. selection 7	DI6	CN10-7	Same as the one of when used with only a servo amplifier. Refer to section 2.3 (1) (a).	DI-1	\bigcirc	$\$ & \bigcirc	\bigcirc	
Point table No. 8/Program No. selection $8 / \mathrm{Next}$ station No. selection 8	DI7	CN10-8		DI-1		$\$ & \bigcirc	\bigcirc	

Device	Symbol	Connector pin No．	Function and application					$\begin{array}{\|c} \mathrm{I} / \mathrm{O} \\ \text { division } \end{array}$	Control mode				
								O－	－	U	か		
Cam control command	CAMC		When using CAMC，set［Pr．PT35］to＂＿1＿＿＂to enable it．Turning CAMC on switches the control from the normal positioning control to the cam control．						DI－1	\triangle	\triangle	\triangle	人
Cam position compensation request	CPCD		Turning CPCD on compensates the cam axis one cycle current value to be in the position set in＂Cam control data No． 60 －Cam position compensation target position＂．					DI－1	\triangle	\triangle	\triangle	¢	
Clutch command	CLTC		This is used to turning on／off the main shaft clutch command． This is used when＂Cam control data No． 36 －Main shaft clutch control setting＂is set to＂ \qquad 1＂．					DI－1	\triangle	\triangle	\triangle	人	
Cam control command	CAMC		When using CAMC，set［Pr．PT35］to＂＿1＿＿＂to enable it．Turning CAMC on switches the control from the normal positioning control to the cam control．					DI－1	\triangle	\triangle	\triangle	¢	
Cam No． selection 0	CIO		Select cam No． This is enabled when＂Cam control data No． 49 －Cam No．＂is set to ＂ 0 ＂．					DI－1	\triangle	\triangle	\triangle	\}	
Cam No． selection 1	CI1	－	Device（Note 1）				Selection contents		\triangle	\triangle	\triangle	\bigcirc	
Cam No． selection 2	Cl 2	＞	Cl3	Cl 2	Cl 1	CIO			\triangle	\triangle	\triangle		
Cam No． selection 3	Cl3		0	0	0	0	Linear cam		\triangle	\triangle	\triangle		
			0	0	0	1	Cam No．		Δ	\triangle	Δ		
			0	0		0							
						1							
			0	0	1	1	Cam No． 3						
			．	＊	－	－							
			．	．	．	．							
			1	0	0	0	Cam No． 8						
			1	0	0	1	Setting prohibited （Note 2）						
			．	．	－	．							
			1	1	1	1							
			Note 1．0：Off 1: On 2．［AL．F6．5 Cam No．external error］occurs．										

(b) Output device

（2）Input signal

Device	Symbol	Connector pin No．	Function and application	$\left\|\begin{array}{c} \text { I/O } \\ \text { division } \end{array}\right\|$	Control mode			
					\bigcirc	O	Ј	の
Analog torque limit	OTLA	CN20－12	To use this signal，set［Pr．Po11］to＂＿1＿＿＂．When OTLA is enabled， torque is limited in the full servo motor output torque range．Apply 0 V to +10 V DC between OTLA and LG．Connect + of the power supply to OTLA．The maximum torque is generated at +10 V ． Resolution： 12 bits	Analog input	\triangle	\triangle	\triangle	\triangle
Analog override	OVC	CN20－2	To use this signal，set［Pr．Po11］to＂＿＿1＿＂．The signal controls the servo motor setting speed by applying -10 V to +10 V DC to between VC and LG．The percentage will be 0% with $-10 \mathrm{~V}, 100 \%$ with 0 V ，and 200% with +10 V to the servo motor setting speed． Resolution： 12 bits	Analog input	\triangle	\triangle	\triangle	\rangle

（3）Output signal

Device	Symbol	Connector pin No．	Function and application	$\begin{gathered} 1 / O \\ \text { division } \end{gathered}$	Control mode			
					0	O－	Ј	の
Analog monitor 1	OMO1	CN20－4	This signal outputs the data set in［Pr．Po13］to between OMO1 and LG in terms of voltage． Resolution： 12 bits or equivalent	Analog output	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Analog monitor 2	OMO2	CN20－14	This signal outputs the data set in［Pr．Po14］to between OMO2 and LG in terms of voltage． Resolution： 12 bits or equivalent	Analog output	\bigcirc	\bigcirc	\bigcirc	\bigcirc

（4）Power supply

Device	Symbol	Connector pin No．	Function and application	$\left\|\begin{array}{c} \text { I/O } \\ \text { division } \end{array}\right\|$	Control mode			
					0	O	৩	の
MR－D01 digital I／F power supply input	DICOMD	$\begin{aligned} & \text { CN10-13 } \\ & \text { CN10-14 } \end{aligned}$	Input 24 V DC（ 24 V DC $\pm 10 \% 800 \mathrm{~mA}$ ）for I／O interface．The power supply capacity changes depending on the number of I／O interface points to be used． For sink interface，connect＋of 24 V DC external power supply． For source interface，connect－of 24 V DC external power supply．		\bigcirc	\bigcirc	\bigcirc	\bigcirc
MR－D01 digital I／F common	DOCOMD	CN10－37	Common terminal of input signals such as SON，RES，and others of the servo amplifier．This is separated from LG． For sink interface，connect－of 24 V DC external power supply． For source interface，connect＋of 24 V DC external power supply．		\bigcirc	\bigcirc	\bigcirc	\bigcirc
15 V DC power supply	P15R	CN20－13	This outputs 15 V DC to between P15R and LG．This is available as the power for OTLA and OVC．Permissible current： 30 mA		\bigcirc	\bigcirc	\bigcirc	\bigcirc
－12 V DC power supply	N12R	CN20－15	This outputs -12 V DC to between N12R and LG．This is available as the power for VC． However，the voltage varies within the range of -12 V to -15 V ． Permissible current： 30 mA		\bigcirc	\bigcirc	\bigcirc	\bigcirc
Control common	LG	$\begin{aligned} & \text { CN20-1 } \\ & \text { CN20-9 } \\ & \text { CN20-11 } \end{aligned}$	This is a common terminal for OTLA，OVC，OMO1，OMO2，and P15R． Pins are connected internally．		\bigcirc	\bigcirc	\bigcirc	\bigcirc
Shield	SD	$\begin{gathered} \text { CN10-50 } \\ \text { plate } \\ \hline \end{gathered}$	Connect the external conductor of the shielded wire．		\bigcirc	\bigcirc	\bigcirc	\bigcirc

(5) Analog override

To use OVC (analog override), set [Pr. Po11] to "_ _ 1 _". The override function has two types. One is analog override by using analog voltage input and another is digital override by using parameter settings. - Analog override target method: Point table method/program method - Digital override target method: Indexer method OVR (Analog override selection) is for the analog override. The digital override does not depend on OVR (Analog override selection). Refer to [Pr. PT38], [Pr. PT42], and [Pr. PT43] for the digital override. When using the analog override in the point table method or program method, enable OVR (Analog override selection). The following shows usable functions and non-usable functions. (1) Analog override usable - Automatic operation mode (point table method/program method) - JOG operation in the manual operation mode - Automatic positioning to home position function in the point table method (2)Analog override unusable - Manual pulse generator operation in the manual operation mode - Home position return mode - Test operation mode using MR Configurator2 (positioning operation/JOG operation)	

You can change the servo motor speed by using OVC (Analog override). The following table shows signals and parameters related to the analog override.

Item	Name	Remark
Analog input signal	OVC (Analog override)	To use OVC (analog override), set [Pr. Po11] to "___1_".
Contact input signal	OVR (Analog override selection)	Turning on OVR enables the OVC (Analog override) setting value.
Parameter	[Pr. Po21 D01 override offset]	-9999 to 9999 [mV]

(a) OVC (Analog override)

You can continuously set changed values from outside by applying voltage (-10 to +10 V) to OVC (Analog override). The following shows percentage of the actual speed to input voltage and set speed.

Note. This diagram shows sink input interface.
(b) OVR (Analog override selection)

Enable or disable OVC (Analog override).

Select a changed value by using OVR (Analog override selection).

(Note) External input signal	Speed change value
0	No change
1	Setting of OVC (Analog override) is enabled.

Note. 0: Off
1: On
(c) Analog override offset ([Pr. Po21])

You can set an offset voltage to the input voltage of OVC (Analog override) with [Pr. Po21]. The setting value ranges from -9999 to $+9999[\mathrm{mV}]$.
(6) Torque limit

If the torque limit is canceled during servo-lock, the servo motor may suddenly rotate according to position deviation in respect to the command position.
§CAUTION When using the torque limit, check that [Pr. PB06 Load to motor inertia ratio] is set properly. Improper settings may cause an unexpected operation such as an overshoot.

POINT
To use OTLA (Analog torque limit), set [Pr. Po11] to "_ 1 _ _".
(a) Torque limit and torque

By setting [Pr. PA11 Forward rotation torque limit] or [Pr. PA12 Reverse rotation torque limit], torque is always limited to the maximum value during operation. A relation between the limit value and servo motor torque is as follows.

A relation between the applied voltage of OTLA (Analog torque limit) and the torque limit value of the servo motor is as follows. Torque limit values will vary about 5% relative to the voltage depending on products. At the voltage of less than 0.05 V , torque may vary as it may not be limited sufficiently. Therefore, use this function at the voltage of 0.05 V or more.

OTLA applied voltage vs. torque limit value

Connection example

Note. This diagram shows sink I/O interface. For source I/O interface, refer to section 11.5.5 (5).
(b) Torque limit value selection

The following shows how to select a torque limit using TL (External torque limit selection) from [Pr. PA11 Forward torque limit] or [Pr. PA12 Reverse torque limit] and OTLA (Analog torque limit). When TL1 (Internal torque limit selection) is enabled with [Pr. Po02] to [Pr. Po07], [Pr. Po27], and [Pr. Po28], you can select [Pr. PC35 internal torque limit 2/Internal thrust limit 2].
However, if [Pr. PA11] and [Pr. PA12] value is less than the limit value selected by TL/TL1, [Pr. PA11] and [Pr. PA12] value will be enabled.

(Note) Input device		Limit value status			Enabled torque limit value	
TL1	TL				CCW power running/ CW regeneration	CW power running/ CCW regeneration
0	0				Pr. PA11	Pr. PA12
0	1	OTLA	>	$\begin{aligned} & \hline \text { Pr. PA11 } \\ & \text { Pr. PA12 } \end{aligned}$	Pr. PA11	Pr. PA12
		OTLA	<	$\begin{aligned} & \hline \text { Pr. PA11 } \\ & \text { Pr. PA12 } \end{aligned}$	OTLA	OTLA
1	0	Pr. PC35	>	$\begin{aligned} & \hline \text { Pr. PA11 } \\ & \text { Pr. PA12 } \end{aligned}$	Pr. PA11	Pr. PA12
		Pr. PC35	<	$\begin{aligned} & \hline \text { Pr. PA11 } \\ & \text { Pr. PA12 } \end{aligned}$	Pr. PC35	Pr. PC35
1	1	OTLA	>	Pr. PC35	Pr. PC35	Pr. PC35
		OTLA	<	Pr. PC35	OTLA	OTLA

Note. 0: Off

> 1: On
(c) TLC (Limiting torque)

TLC turns on when the servo motor torque reaches the torque limited using the forward rotation torque limit, reverse rotation torque limit or analog torque limit.

11.5.4 Interfaces

(1) Internal connection diagram

The following shows an example of internal connection diagram of the point table method in a BCD input positioning operation. For the internal connection diagram of the servo amplifier, refer to section 2.5.1.

Note 1. The devices can be changed by [Pr. Po02] to [Pr. Po07], [Pr. Po27], and [Pr. PD28].
2. This diagram shows sink I/O interface. For source I/O interface, refer to section 2.5.3.
(2) Detailed explanation of interfaces

This section provides the details of the I/O signal interfaces (refer to the I/O division in the table) given in section 11.5.3. Refer to the following and make connection with the external device.
(a) Digital input interface DI-1

This is an input circuit whose photocoupler cathode side is input terminal. Transmit signals from sink (open-collector) type transistor output, relay switch, etc. The following is a connection diagram for sink input.

(b) Digital output interface DO-1

This is a circuit in which the collector of the output transistor is the output terminal. When the output transistor is turned on, the current will flow from the collector terminal.
A lamp, relay, or photocoupler can be driven. Install a diode (D) for an inductive load, or install an inrush current suppressing resistor (R) for a lamp load.
(Rated current: 40 mA or less, maximum current: 50 mA or less, inrush current: 100 mA or less) A maximum of 2.6 V voltage drop occurs in the servo amplifier.
The following shows a connection diagram for sink output.

Note. If the voltage drop (maximum of 2.6 V) interferes with the relay operation, apply a high voltage (maximum of 26.4 V) from an external source.
(3) Analog input

Input impedance
$10 \mathrm{k} \Omega$ to $12 \mathrm{k} \Omega$

(4) Analog output

Note. Output voltage range varies depending on the monitored signal. When connecting analog output to an external device, use the withstand voltage of 15 V DC or higher.

11. MR-D01 EXTENSION I/O UNIT

(5) Source I/O interface

In this servo amplifier, source type I/O interfaces can be used.
(a) Digital input interface DI-1

This is an input circuit in which the anode of the photocoupler is the input terminal. Transmit signals from a source (open-collector) type transistor output, relay switch, etc.

(b) Digital output interface DO-1

This is a circuit in which the emitter of the output transistor is the output terminal. When the output transistor is turned on, the current will flow from the output terminal to a load.
A maximum of 2.6 V voltage drop occurs in the servo amplifier.

Note. If the voltage drop (maximum of 2.6 V) interferes with the relay operation, apply a high voltage (maximum of 26.4 V) from an external source.

11. MR-D01 EXTENSION I/O UNIT

11.6 Monitor display with MR Configurator2

The following shows how to display the input/output monitor with MR Configurator2 when MR-D01 has been connected.
(1) Initial setting

When MR-D01 has been connected, click "MR-D01" from the "Option unit" menu in the creating new project window of MR Configurator2.

(2) How to open the optional unit monitor window

Click "Monitor" in the menu bar and "I/O Monitor" from the menu.

The following window is displayed. Click "Option unit monitor" in the menu bar.

The following window is displayed. The input/output monitor on the MR-D01 side can be checked.

11. MR-D01 EXTENSION I/O UNIT

11.7 Operation

The following items are same as those of MR-J4-_A_-RJ servo amplifiers. For the details of the items, refer to each chapter/section indicated in the detailed explanation field.

Item	Detailed explanation
Startup (except parameter setting)	Section 4.1

11.7.1 Operation mode and selecting method

When MR-D01 is used, the following automatic operation modes in the following table can be selected. Select an operation mode used in the parameter and input device.

Operation mode		[Pr. Po10] setting	Input device setting (Note)		Detailed explanation	
		MD0	SPD1 to SPD4			
Automatic operation mode	When using a MR-DS60 digital switch for automatic operation with BCD (3 digits $\times 2$) inputs		--_ ${ }^{2}$	On	Any	Section 12.6.2
	When using a programmable controller for automatic operation with BCD (3 digits $\times 2$) inputs	Section 12.6.3				

Note. MD0: Automatic/manual selection, SPD1 to SPD4: Speed selection 1 to 4
11.7.2 When using MR-DS60 (6-digit digital switch) for automatic operation with BCD (3-digit $\times 2$) inputs

| POINT |
| :---: | :---: |
| |
| The speed change with the analog override function is enabled in both of the |
| automatic operation mode and manual operation mode. However, it is disabled |
| under the following conditions. |
| • During home position return |
| • During deceleration or stop with TSTP (Temporary stop/restart) |

Based on the position data set with MR-DS60 (6-digit digital switch) and the selected speed command, positioning is executed. For a connection example of MR-DS60 (6-digit digital switch) and servo amplifier, refer to section 11.5.1 (2) (a).
(1) Parameter setting

Set the parameters to use BCD (3-digit $\times 2$) inputs with [Pr. Po10]. Refer to the following table and set the parameters as necessary.

No.	Name	Setting digit	Setting item	Setting value	Setting
[Pr. Po10]	Function selection O-1	- _ - ${ }^{\text {P }}$	Operation method	--_ 2	Always set this item. Enable the input/output devices required for BCD input. For the devices to be enabled, refer to section 11.5.2.
		X	Strobe	$\begin{aligned} & 2 \text { (initial value) } \\ & \hline \end{aligned}$	STRB (Strobe) is not used. Do not change the initial value.
		${ }_{-}{ }^{\text {- }}$	Sign of the position data for BCD positioning	0	6-digit position data without signs (+/-)
				${\overline{\text { (initial }}{ }^{1}-}$	6 -digit position data with signs (+/-)
[Pr. PT01]	Command mode selection	--- ${ }^{\text {x }}$	Positioning command method selection	$\begin{array}{\|l\|l} \hline \text { (initial value) } \\ \hline \end{array}$	Absolute value command method
				1	Incremental value command method
[Pr. PT03]	Feeding function selection	- - ${ }^{\text {x }}$	Feed length multiplication [STM]		Refer to section 7.2.9.
[Pr. PA14]	Rotation direction selection/ Travel direction selection		Servo motor rotation direction	0 (initial value)	ST1 (Forward rotation start) on: Rotates the servo motor in the CCW direction. ST2 (Reverse rotation start) on: Rotates the servo motor in the CW direction.
				1	ST1 (Forward rotation start) on: Rotates the servo motor in the CW direction. ST2 (Reverse rotation start) on: Rotates the servo motor in the CCW direction.

(2) Operation

Set position data with the MR-DS60 (6-digit digital switch) and turn on ST1 (Forward rotation start) to move the travel distance of the position data in the forward direction with the rotation speed, acceleration time constant, and deceleration time constant set in the point table selected with SPD1 (Speed selection 1) to SPD4 (Speed selection 4). In the incremental value command method, turning on ST2 (Reverse rotation start) moves the travel distance in the reverse direction.
Select point tables as follows with SPD1 (Speed selection 1) to SPD4 (Speed selection 4) and execute the positioning based on the set rotation speed, acceleration time constant, and deceleration time constant.
In this case, the position data set to the point table is not used.

(Note) Device				Selected Point table No.
SPD4	SPD3	SPD2	SPD1	
0	0	0	1	2
0	0	1	0	\cdot
.	\cdot	\cdot	\cdot	\cdot
.	\cdot	\cdot	\cdot	\cdot
	\cdot	\cdot	\cdot	13
1	1	0	1	14
1	1	1	0	15
1	1	1	1	

Note. 0: Off
1: On
(3) Timing chart

Note 1. In the incremental value command method, ST2 (Reverse rotation start) can be used. In this case, the timing chart is the same as the one for ST1.
2. The detection of external input signals is delayed by the time set in the input filter setting of [Pr. PD29]. Considering the output signal sequence from the controller and signal variations due to hardware, configure a sequence that changes the position data earlier.
3. The speed command selected in Speed selection 1 (SPD1) to 4 (SPD4)
4. This signal is off when the power is on.
5. This signal is on when the power is on.
 establishment condition].

11. MR-D01 EXTENSION I/O UNIT

(4) Temporary stop/restart during automatic operation

When TSTP (Temporary stop/restart) is switched on during automatic operation, the servo motor decelerates with the deceleration time constant of the point table being executed, and then stops temporarily. Switching on TSTP (Temporary stop/restart) again restarts the servo motor rotation for the remaining distance.
During a temporary stop, ST1 (Forward rotation start) or ST2 (Reverse rotation start) does not function even if it is switched on.
Changing the automatic mode to manual mode during a temporary stop will erase a travel remaining distance.
The TSTP (Temporary stop/restart) does not function during a home position return or JOG operation.

Note. When SPD1 (Speed selection 1) to SPD4 (Speed selection 4) are used, the acceleration/deceleration time constants of the point table selected at the start are used.
11.7.3 When using a programmable controller for automatic operation with $\mathrm{BCD}(3$ digits $\times 2)$ inputs

POINT

The speed change with the analog override function is enabled in both of the automatic operation mode and manual operation mode. However, it is disabled under the following conditions.

- During home position return
- During deceleration or stop with TSTP (Temporary stop/restart)

Based on the position data set with the programmable controller and the selected speed command, positioning is executed. For a connection example of the programmable controller and servo amplifier, refer to section 11.5.1 (2) (b).
(1) Parameter setting

Set the parameters to use BCD (3 digits $\times 2$) inputs and STRB (Strobe) with [Pr. Po10]. Refer to the following table and set the parameters as necessary.

No.	Name	Setting digit	Setting item	Setting value	Setting
[Pr. Po10]	Function selection O-1	--- ${ }^{\text {x }}$	Operation method	--_ 2	Always set this item. Enable the input/output devices required for BCD input. For the devices to be enabled, refer to section 3.4.
		X	Strobe	0 _	Always set this item. When using a programmable controller, STRB (Strobe) is required.
		${ }_{-}{ }^{\text {- }}$	Sign of the position data for BCD positioning	0	6-digit position data without signs (+/-)
				${\overline{\text { (initial }}{ }^{1}-}$	6-digit position data with signs (+/-)
[Pr. PT01]	Command mode selection	- - - ${ }^{\text {x }}$	Positioning command method selection	$\overline{\text { (initial value) }}$	Absolute value command method
				1	Incremental value command method
[Pr. PT03]	Feeding function selection	--- ${ }^{\text {x }}$	Feed length multiplication [STM]		Refer to section 7.2.9.
[Pr. PA14]	Rotation direction selection/ Travel direction selection		Servo motor rotation direction	0 (initial value)	ST1 (Forward rotation start) on: Rotates the servo motor in the CCW direction. ST2 (Reverse rotation start) on: Rotates the servo motor in the CW direction.
				1	ST1 (Forward rotation start) on: Rotates the servo motor in the CW direction. ST2 (Reverse rotation start) on: Rotates the servo motor in the CCW direction.

(2) Operation

Set position data with the programmable controller and turn on ST1 (Forward rotation start) to move the travel distance of the position data with the rotation speed, acceleration time constant, and deceleration time constant set in the point table selected with SPD1 (Speed selection 1) to SPD4 (Speed selection 4). In the incremental value command method, turning on ST2 (Reverse rotation start) moves the travel distance in the reverse direction.
Select point tables as follows with SPD1 (Speed selection 1) to SPD4 (Speed selection 4) and execute the positioning based on the set rotation speed, acceleration time constant, and deceleration time constant.

(Note) Device				Selected Point table No.
SPD4	SPD3	SPD2	SPD1	
0	0	0	1	2
0	0	1	0	\cdot
.	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot
.	\cdot	\cdot	\cdot	13
1	1	0	1	14
1	1	1	0	15
1	1	1	1	

Note. 0: Off
1: On

11. MR-D01 EXTENSION I/O UNIT

(3) Timing chart

Note

1. In the incremental value command method, ST2 (Reverse rotation start) can be used. In this case, the timing chart is the same as the one for ST1.
2. The detection of external input signals is delayed by the time set in the input filter setting of [Pr. PD29]. Considering the output signal sequence from the controller and signal variations due to hardware, configure a sequence that changes the position data earlier.
3. The speed command selected in Speed selection 1 (SPD1) to 4 (SPD4)
4. This signal is off when the power is on.
5. This signal is on when the power is on.
(4) Temporary stop/restart during automatic operation

When TSTP (Temporary stop/restart) is switched on during automatic operation, the servo motor decelerates with the deceleration time constant of the point table being executed, and then stops temporarily. Switching on TSTP again restarts the servo motor rotation for the remaining distance. During a temporary stop, ST1 (Forward rotation start) or ST2 (Reverse rotation start) does not function even if it is switched on.
Changing the automatic mode to manual mode during a temporary stop will erase a travel remaining distance.
The TSTP (Temporary stop/restart) does not function during a home position return or JOG operation.

Note. When SPD1 (Speed selection 1) to SPD4 (Speed selection 4) are used, the acceleration/deceleration time constants of the point table selected at the start are used.

11.7.4 Home position return in the BCD (3 digits $\times 2$) input operation

The home position return in the BCD (3 digits $\times 2$) input operation is the same as the one in the point table method. Refer to section 4.4. For the devices, refer to the following table.

Item	Device to be used	Setting
Home position return mode selection	MD0 (Operation mode selection 1)	Switch on MD0.
	SPD1 (Speed selection 1) to SPD4 (Speed selection 4)	Turn off SPD1 to SPD4.
	ST1 (Forward rotation start)	Turn on ST1 for the manual home position return.
	ST2 (Reverse rotation start)	Turn on ST2 for automatic positioning to the home position.

11.8 Dimensions

11.8.1 MR-D01 extension I/O unit

11.8.2 When an MR-D01 extension IO unit is connected to a servo amplifier
$100 \mathrm{~V} / 200 \mathrm{~V} 0.1 \mathrm{~kW}$ to 3.5 kW 400 V 0.6 kW to 2 kW

Servo amplifier

200 V 5 kW/7 kW 400 V 3.5 kW to 7 kW Servo amplifier

Servo amplifier	L [mm]
MR-J4-10A1-RJ to MR-J4-40A1-RJ MR-J4-10A-RJ to MR-J4-100A-RJ MR-J4-60A4-RJ to MR-J4-100A4-RJ	20
MR-J4-200A-RJ/MR-J4-350A-RJ MR-J4-200A4-RJ	15
MR-J4-500A-RJ/MR-J4-700A-RJ MR-J4-350A4-RJ to MR-J4-700A4-RJ	10
MR-J4-11KA-RJ to MR-J4-22KA-RJ MR-J4-11KA4-RJ to MR-J4-22KA4-RJ	0

11.9 Options and peripheral equipment

11.9.1 Combinations of cable/connector sets

No.	Product name	Model	Description	Application
1)	Connector set	MR-CCN1	Connector: 10120-3000PE Shell kit: 10320-52F0-008 (3M or equivalent)	\searrow
2)	Connector set	MR-J3CN1	Connector set: 10150-3000PE Shell kit: 10350-52F0-008 (3M or equivalent)	
3)	Digital switch cable	MR-DSCBL_M-G	Refer to section 11.5.1 (2) (a) and 11.9.2 for details.	For digital switch
4)	Digital switch cable	MR-DSCBL_	Refer to section 11.5.1 (2) (a) and 11.9.2 for details.	For digital switch junction
5)	Junction terminal block (recommended)			
6)	Junction terminal block Cable	MR-J2M- CN1TBL_M Cable length: $0.5 / 1 \mathrm{~m}$ (Refer to section 11.9.4.)	Junction terminal block connector CN10 connector Connector: D7950-B500FL Connector: 10150-6000EL (3M) Shell kit: 10350-3210-000 (3M or equivalent)	For junction terminal block connection
7)	Junction terminal block	MR-TB50	Refer to section 11.9.4.	-

11.9.2 MR-DS60 (6-digit digital switch)

Position data can be provided with BCD signals by using MR-DS60 (6-digit digital switch). For the connection of MR-DS60 and MR-D01, refer to section 11.5.1 (2) (a).
(1) Parameter setting

When using MR-DS60, set [Pr. Po10] to "2 _ 0 2".

(2) Specifications of MR-DS60

Item	Specifications
Model	MR-DS60
Number of digits	Signed 6-digit BCD
Electrical characteristics	28 V DC $(0.5 \mathrm{~A})$
Withstand voltage	$500 \mathrm{Vr} . \mathrm{m} . \mathrm{s}$
Contact resistance	$100 \mathrm{~m} \Omega$ or lower
Life	$1,000,000$ times
Temperature range for operation	$0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Storage temperature	$-5^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

(3) Digital switch cable

Use the following digital switch cables and connect them with MR-D01.

Cable model	Cable length					Application
	0.25 m	1 m	3 m	5 m	10 m	
MR-DSCBL_M-G			3	5	10	Between MR-DS60 and MR-D01
MR-DSCBL_	25	100			Between MR-DS60 and MR- DS60	

(4) Terminal assignment

(5) Dimensions
[Unit: mm]

(6) Mounting
[Unit: mm]

Front installation
Panel cut

Panel cut

11.9.3 PS7DW-20V14B-F (Junction terminal block) (recommended)

(1) Usage

Always use the PS7DW-20V14B-F (Junction terminal block) (Yoshida Electric Industry)) with the option cable (MR-J2HBUS_M) as a set. A connection example is shown below.

Ground the option cable on the junction terminal block side with AERSBAN-ESET (cable clamp fitting). For how to use the cable clamp fitting, refer to section 11.14 (2) (c) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
(2) Connection of MR-J2HBUS_M cable and junction terminal block

PS7DW-20V14B-F

Note 1. Symbol indicating cable length is put in _.
05: 0.5 m
1: 1 m
5: 5 m
2. Do not connect anything to the terminal where no signal has been assigned.
(3) Dimensions of junction terminal block
[Unit: mm]

11. MR-D01 EXTENSION I/O UNIT

11.9.4 MR-TB50 (Junction terminal block)

(1) Usage

Always use MR-TB50 (Junction terminal block) with MR-J2M-CN1TBL_M (Junction terminal block cable) as a set.

Ground the junction terminal block cable on the junction terminal block side with the supplied AERSBAN-ESET (cable clamp fitting). For how to use the cable clamp fitting, refer to section 11.14 (2) (c) of "MR-J4-_A_(-RJ) Servo Amplifier Instruction Manual".
(2) Dimensions of MR-TB50

(3) Connection diagram of MR-J2M-CN1TBL_M cable and MR-TB50 The following connection diagram shows BCD input as an example.

MEMO
\qquad

12. APPLICATION OF FUNCTIONS

12. APPLICATION OF FUNCTIONS

This chapter explains about application of using positioning function of servo amplifier.

| Note that the number of write times to the Flash-ROM where the cam data is |
| :--- | :--- |
| stored is limited to approximately 1000. If the total number of write times exceeds |
| 1000, the servo amplifier may malfunction when the Flash-ROM reaches the end |
| of its useful life. |

12.1 Simple cam function

POINT

The simple cam function is available with servo amplifiers with software version B7 or later.
The simple cam function can be used with the point table method and the program method.
This function is not available with the servo amplifier to which the MR-D30 unit has been connected.

12.1.1 Outline of simple cam function

Simple cam function enables synchronous control by using software instead of controlling mechanically with cam.
The following shows a movement trajectory when the cam below is used and the input axis is rotated once.

By setting cam data and cam control data, the simple cam function enables synchronous control with an input axis (external pulse command input, point table command, or program positioning command) with a start of positioning.

12. APPLICATION OF FUNCTIONS

12.1.2 Simple cam function block

The function block diagram of the simple cam is shown below. Use MR Configurator2 to set the cam data and the cam control data.

12. APPLICATION OF FUNCTIONS

12.1.3 Control of simple cam function

The following three cam controls are available by setting the cam data and the cam control data with MR Configurator2.

Cam control method	Description	Actual movement
To-and-fro control	Reciprocates within a specified cam stroke.	Cam data and cam control data
Feed control	Updates a cam standard position per cycle.	Cam data and cam control data
Linear control	Performs linear control to keep one-cycle ratio as 100%.	Cam data and cam control data (Linear cam: Cam No. 0)

12. APPLICATION OF FUNCTIONS

The feed current value of the cam axis is calculated as follows:
(1) Stroke ratio data type

Feed current value $=$ Cam standard position $+($ Cam stroke amount \times Stroke ratio to cam axis one cycle current value)
(2) Coordinate data type

Feed current value = Cam standard position + Output value to cam axis one cycle current value

When the cam axis one cycle current value is in the middle of the specified stroke ratio data, the intermediate value is calculated using the cam data before and after the value.

12.1.4 Simple cam specification list
(1) Specification list

Item			MR-J4-_A
Memory capacity (Note 1)		Storage area for cam data	8 Kbytes (Flash-ROM)
		Working area for cam data	8 Kbytes (RAM) (Note 2)
Number of registration			Max. 8
Comment			Max. 32 single-byte characters for each cam data
Cam data and cam control data	Stroke ratio data type	Cam resolution	256/512/1024/2048
		Stroke ratio	-100.000 to 100.000 [\%]
	Coordinate data type	Number of coordinate	2 to 1024
		Coordinate data	Input value: 0 to 999999 Output value: -999999 to 999999
Cam curve			12 types (constant speed/constant acceleration/5th curve/single hypotenuse/cycloid/distorted trapezoid/distorted sine/distorted constant speed/trapecloid/reverse trapecloid/double hypotenuse/reverse double hypotenuse)

Note 1. The memory capacity includes a use area (storage area for cam data) for storing in the servo amplifier and an actual operation area (working area for cam data).
2. This can be always changed by using Modbus-RTU communication during servo-off.

12. APPLICATION OF FUNCTIONS

(2) Cam resolution
(a) Stroke ratio data type

Cam resolution	Max. number of registration
256	8
512	4
1024	2
2048	1

(b) Coordinate data type

Number of coordinate	Max. number of registration
128	8
256	4
512	2
1024	1

12.1.5 Operation in combination with the simple cam
(1) Encoder following function

The servo amplifier receives A/B-phase output signal from a synchronous encoder and starts the servo motor with the signal.
Up to 4 Mpulses/s of input from synchronous encoder is compatible with the servo amplifier.

12. APPLICATION OF FUNCTIONS

(2) Mark sensor input compensation function

The servo amplifier receives input signals from a mark sensor, calculates compensation amounts, and corrects position errors of the rotary knife axis.

Inverter
(Drives conveyor axis by speed control)

Item	Specifications
Number of mark detection setting	One setting (one input)
Input signal detection direction	Detected by rising edge of an external input signal
Detection accuracy (compensation cycle)	Max. $888 \mu \mathrm{~s}$

12. APPLICATION OF FUNCTIONS

(3) Synchronous operation using positioning data

A synchronous operation is enabled by setting the same positioning data and starting the positioning simultaneously. For example, to synchronize the vertical motion of the vertical axis (axis 2) with the position of the horizontal axis (axis 1), input the positioning commands for axis 1 to axis 2 as well.

Cam data created by users and cam control data

[^8]
12. APPLICATION OF FUNCTIONS

(4) Operation example of synchronous interpolation between two axes

To move a part from point P1 to P3 making a detour to avoid work A, axis 2 starts moving after the travel completion signal of axis 1 is checked at point P2. However, by using the cam control, checking of the travel completion signal is not necessary, shortening the positioning time.

(5) Cam data transmission through Modbus-RTU

Rewriting cam data is possible by transmitting the cam data through Modbus-RTU communication if over eight cam data exceeding the maximum number of registration need to be used. In this case, be sure to rewrite the cam data in servo-off state.

12.1.6 Setting list

(1) List of items set with MR Configurator2

Set the following on the cam setting window of MR Configurator2.

Setting item		
Cam control data	Main shaft input axis selection	Cam No. selection
	Resolution setting	Select a command input method for the cam axis. Select from "Encoder following (external pulse input)" and "Internal point table".
	Cam axis one cycle length	Select the number to create the cam control data.
	Cam stroke amount	Set a cam stroke amount for the stroke ratio of 100\% when using the stroke ratio data type cam control.
Cam data	Create the cam data on the cam creating window of MR Configurator2. After the data is created, write the cam data to the servo amplifier.	

(2) List of items set with parameters of the servo amplifier Set the following with the parameters of the servo amplifier.

Setting item	Setting
Operation mode selection	Select "Positioning mode (point table method or program method)" with [Pr. PA01 Operation mode].
Cam function setting	Enable the cam function with [Pr. PT35 Function selection T-5].
Cam data selection	Select the cam data to be executed with CIO (Cam No. selection 0) to CI3 (Cam No. selection 3). Selecting the cam data for execution is also possible with "Cam control data No. 49 Cam No.".
Device setting	Assign CAMC (Cam control command input), CAMS (Output in cam control), and CI0 (Cam No. selection 0) to CI3 (Cam No. selection 3) with I/O setting parameters ([Pr. PD__]).

12. APPLICATION OF FUNCTIONS

12.1.7 Data to be used with simple cam function

| NAUTIONNote that the number of write times to the Flash-ROM is limited to approximately
 100,000. Exceeding the limited number of write times causes the servo amplifier
 to malfunction. If setting values need to be changed with a high frequency, write
 the setting values to the RAM, not to the Flash-ROM. |
| :--- | :--- |

(1) Memory configuration of cam control data and cam data

The cam control data and the cam data used for the simple cam are stored in Flash-ROM inside the servo amplifier. When the power is turned on, the cam data and the cam control data are copied from the Flash-ROM to the RAM inside the servo amplifier, and then cam control will be executed.

Note. When the power is turned on, the cam data and the cam control data are copied from the Flash-ROM to the RAM.

Use MR Configurator2 to write the cam control. Two writing methods are available.

Writing method	Description
Temporary writing	Write the cam control data and the cam data to the RAM of the servo amplifier. After writing, the cam control data and the cam data will be reflected. The written data will be disabled if the power is turned off. Use this when creating and adjusting the cam control data and the cam data.
Writing	Write the cam control data and the cam data to the Flash-ROM. The data will be enabled when the power is cycled after writing After cycling the power, control is performed based on the written data. Conduct this after the cam control data and the cam data are finalized.

12. APPLICATION OF FUNCTIONS

(2) Cam data and cam control data

The following two types are available for the cam data and cam control data.

Cam data and cam control data type	
Stroke ratio data type	Cam curve of one cycle is divided equally by the number of cam resolution and defined. The cam curve will be created according to the stroke ratio data of the number of cam resolution.
Coordinate data type	Data in which cam curve of one cycle is defined with two or more points. The coordinate data is defined as "(input value, output value)". The input value will be the cam axis one cycle current value, and the output value will be the stroke value from the cam standard position.

(a) Stroke ratio data type

The following are set in the stroke ratio data type.
Set these on the cam setting window of MR Configurator2.

Setting item	Setting	Setting range
Cam No.	Set a Cam No.	0: Linear cam 1 to 8: User-created cam
Cam data and cam control data type	Set "1: Stroke ratio data type".	
Cam resolution	Set the number of divisions for the cam curve of one cycle.	Select from $256 / 512 / 1024 / 2048$.
Cam data and cam control data start position	Set the positions of the cam data and cam control data to the position of when "Cam axis one cycle current value" is "0".	0 to "Cam resolution -1"
Stroke ratio data	Set the stroke ratio from the first to the last point.	-100.000 to 100.000

The following shows a setting example for "cam resolution $=512$ " in the stroke ratio data type.

12. APPLICATION OF FUNCTIONS

(b) Coordinate data type

The following are set in the coordinate data type. Set these on the cam setting window of MR Configurator2.

Setting item	Setting	Setting range
Cam No.	Set a Cam No.	0: Linear cam 1 to 8: User-created cam
Cam data and cam control data type	Set "2: Coordinate data type".	
Number of coordinate	Set the number of coordinates for the cam curve of one cycle. The number of coordinates includes 0th point.	2 to 1024
Cam data and cam control data start position	Setting is not necessary.	Set the coordinate data as "(input value Xn, output value Yn)" for the number of coordinates. Set from the 0th coordinate data as "(X0, Y0)". Set an input value larger than that of the coordinate data.
Coordinate data		

The following is a setting example for the coordinate data type.

If "input value $=0$ " and "input value = cam axis one cycle length" are not set in the coordinate data, a control is executed by the line connecting the closest two points.

12. APPLICATION OF FUNCTIONS

12.1.8 Function block diagram for displaying state of simple cam control

12.1.9 Operation

For operation method, contact your local sales office.

12. APPLICATION OF FUNCTIONS

12.2 Mark detection

12.2.1 Current position latch function

> POINT

- The current position latch function can be used with the point table method and the program method. However, the current position latch function is disabled in the following condition.
- Home position return
- Manual operation (excluding home position return)
- The latched actual current position data can be read with communication commands.
- For the servo amplifiers with software version B6 or earlier, the latched position data is not compatible with the current position of the state monitor when the roll feed display function is enabled. Disable the roll feed display function to compare the current data of the state monitor and the latched position data.
For the servo amplifiers with software version B 7 or later, the read latched position data is equal to the travel distance as the starting point is set to " 0 " when the roll reed display function is enabled. The output value is the same as the current position of the state monitor.

When the mark detection signal turns on, the current position is latched. The latched data can be read with communication commands.
(1) Communication command

Reads mark detection data.

Command	Data No.	Description	Control mode			Frame length
			合	U	∞	
[1] [A]	[0] [0]	MSD (Mark detection) rising latch data (data part)	\bigcirc	\bigcirc		8
	[0] [1]	MSD (Mark detection) falling latch data (data part)	\bigcirc	\bigcirc		
	[0] [2]	MSD (Mark detection) rising latch data (data part + additional information)	\bigcirc	\bigcirc		12
	[0] [3]	MSD (Mark detection) falling latch data (data part + additional information)	\bigcirc	\bigcirc		

12. APPLICATION OF FUNCTIONS

(2) Reading data
(a) Rising latch data or falling latch data (data part)

Reads MSD (Mark detection) rising latch data or MSD (Mark detection) falling latch data.

1) Transmission

Transmit command [1] [A] and latch data No. to be read [0] [0] or [0] [1]. Refer to section 10.1.1.
2) Return

The slave station returns the requested latch data.

\uparrow
Data will be received in hexadecimal per set command.
Hexadecimal should be changed to decimal.
Example
Data "000186A0" will be 100.000 mm in the command-side unit.
A decimal point position depends on setting contents of [Pr. PT01] and [Pr. PT03].
(b) Rising latch data or falling latch data (data part + additional information)

Reads MSD (Mark detection) rising latch data or MSD (Mark detection) falling latch data.

1) Transmission

Transmit command [1] [A] and latch data No. to be read [0] [2] or [0] [3]. Refer to section 10.1.1.
2) Return

The slave station returns the requested latch data.

\uparrow Data will be received in hexadecimal per set command. Hexadecimal should be changed to decimal.
Example
Data "0040000186A0" will be 100.000 mm in the command-side unit. Decide the decimal point position with [Pr. PT01] and [Pr. PT03].

Display type
0 : Data must be converted into decimal.
1: Data is used unchanged in hexadecimal.
Decimal point position
0 : No decimal point
1: First least significant digit (not used normally)
2: Second least significant digit
3: Third least significant digit
4: Forth least significant digit
5: Fifth least significant digit

12. APPLICATION OF FUNCTIONS

(3) Parameter

Set the parameters as follows:

Item	Parameter to be used	Setting
Mark detection function selection	[Pr. PT26]	Set the mark detection function selection as follows: $0_{\text {_ _ _ : }}$ Current position latch function
Mark detection range + (lower three digits)	[Pr. PC66]	Set the upper limit of the latch data in the current position latch function. When the roll feed display is enabled, set this value with the travel distance from the starting position. Set the same sign for [Pr. PC66] and [Pr. PC67]. A different sign will be recognized as minus sign data. When changing the direction to address decreasing, change it
Mark detection range + (upper three digits)	[Pr. PC67]	from the - side of the mark detection ([Pr. PC68] and [Pr. PC69]). An incorrect order of the setting will trigger [AL. 37]. Therefore, cycling power may be required after [Pr. PC66] to [Pr. PC69] are all set. This parameter setting is available with servo amplifiers with software version B7 or later.
Mark detection range - (lower three digits)	[Pr. PC68]	Set the lower limit of the latch data in the current position latch function. When the roll feed display is enabled, set this value with the travel distance from the starting position. Set the same sign for [Pr. PC68] and [Pr. PC69]. A different sign will be recognized as minus sign data. When changing the direction to address increasing, change it
Mark detection range - (upper three digits)	[Pr. PC69]	from the + side of the mark detection ([Pr. PC66] and [Pr. PC67]). An incorrect order of the setting will trigger [AL. 37]. Therefore, cycling power may be required after [Pr. PC66] to [Pr. PC69] are all set. This parameter setting is available with servo amplifiers with software version B7 or later.

12. APPLICATION OF FUNCTIONS

(4) Latch data range setting

The current position is latched only within the range set in [Pr. PC66] to [Pr. PC69]. (The valid range includes the upper limit value and lower limit value set to the parameters.)
When a same value is set for the upper and lower limits, the current value will be latched for a whole range.
(a) mm , inch, and pulse unit

The current position latch function is enabled when Upper limit value > Lower limit value. The valid range is the same for the absolute value command method ([Pr. PT01]: \qquad 0) and the incremental value command method ([Pr. PT01]: \qquad 1).
[AL. 37 occurs] when Upper limit value < Lower limit value.

1) When the roll feed display is disabled ([Pr. PT26]: _ _ 0 _)

Set the valid range with the distance from the home position.
When the starting position is at 100000, [Pr. PC66] and [Pr. PC67] are set to 500000, and [Pr. PC68] and [Pr. PC69] are set to 300000, the valid range is between the actual current position of 300000 and 500000 as set in the parameters.

2) When the roll feed display is enabled ([Pr. PT26] \qquad 1_)
When the roll feed display is enabled, the valid range is calculated as the starting position is 0 . Set the valid range with the travel distance from the starting position.
When the starting position is at 100000, [Pr. PC66] and [Pr. PC67] are set to 500000, and [Pr. PC68] and [Pr. PC69] are set to 300000, the valid range is between the feed current position of 300000 and 500000 from the start position (between the actual current position of 400000 and 600000).

12. APPLICATION OF FUNCTIONS

(b) Degree unit

When the unit is set to [degree], the setting range of the current position latch is from 0 degree (upper limit) to 359.999 degrees (lower limit).
When you set a value other than 0 degree to 359.999 degrees in the current position latch $+/-[\mathrm{Pr}$. PC66] to [Pr. PC69], the set value is converted as follows.

Current position latch range	After conversion
360.000 degrees to 999.999 degrees	(Setting value) \% 360
-0.001 degrees to -359.999 degrees	$360+$ (setting value)
-360.000 degrees to -999.999 degrees	(setting value) $\% 360+360$

The valid range of the current position latch varies depending on the setting of the upper and lower limits.
The valid range remains unchanged even if the rotation direction is reversed.

To enable the current position latch function of section A in the figure, set the parameters as follows:
Current position latch range -: 315.000 degrees ([Pr. PC68]: 0, [Pr. PC69]: 315)
Current position latch range $+: 90.000$ degrees ([Pr. PC66]: 0, [Pr. PC67]: 90)
To enable the current position latch function of section B in the figure, set the parameter as follows:
Current position latch range -: 90.000 degrees ([Pr. PC68]: 0, [Pr. PC69]: 90)
Current position latch range $+: 315.000$ degrees ([Pr. PC66]: 0, [Pr. PC67]: 315)

12. APPLICATION OF FUNCTIONS

(5) Timing chart

Device rising position data

Device falling position data

MSD (Mark detection)
MSDH
(Mark detection rising latch completed)
MSDL
(Mark detection falling latch completed)

Current position data

Note 1. When MSD (Mark detection) is assigned to the CN1-10 pin with [Pr. PD44], current position data can be obtained in high speed (within 0.4 ms). When assigning MSD (Mark detection) to the CN1-10 pin, set "Mark detection fast input signal filter selection" in [Pr. PD31].
2. The position data will not be changed from the previous value
3. MSDH (Latch completed at rising edge of mark detection) turns off at the same timing as MSDL (Latch completed at falling edge of mark detection) turns on. Set as MSDL turns on/off within the range of the latch data.

If MSD (Mark detection) was turned on again when the previous falling was out of the valid range, MSDH (Latch completed at rising edge of mark detection) will not change, but the position data will be updated. Refer to the following timing chart.

12. APPLICATION OF FUNCTIONS

12.2.2 Interrupt positioning function

The interrupt positioning function executes an operation by changing the remaining distance to the travel distance that is set with [Pr. PT30] and [Pr. PT31] (Mark sensor stop travel distance) when MSD (Mark detection) is turned on. The interrupt positioning function is enabled by setting [Pr. PT26] to "1 \qquad

POINT

- The interrupt positioning function is available with servo amplifiers with software version B7 or later.
- The interrupt positioning function can be used with the point table method and the program method. However, the interrupt positioning function is disabled in the following condition.
- During home position return
- During manual operation
- During stop
- During deceleration or stop with TSTP (Temporary stop/restart)

An error may occur at the mark sensor stop position depending on the droop pulses of when MSD (Mark detection) is turned on and a minimum stopping distance required for deceleration.
(1) Parameter

Set the parameters as follows:

Item	Parameter to be used	Setting
Control mode selection	[Pr. PA01]	Select a control mode. \qquad 6: Positioning mode (point table method) \qquad 7: Positioning mode (program method)
Mark detection function selection	[Pr. PT26]	Set the mark detection function selection as follows: 1 \qquad : Interrupt positioning function Starts the interrupt positioning function at rising of MSD (Mark detection).
PI1 (Program input 1) Polarity selection to PI3 (Program input 3) Polarity selection	[Pr. PT29]	The polarity of MSD (Mark detection) can be changed with [Pr. PT29]. - Starts the interrupt positioning function at rising of MSD (Mark detection) if "_ _ x_" bit 3 of [Pr. PT29] is off. - Starts the interrupt positioning function at falling of MSD (Mark detection) if "__ $x_{\text {_" }}$ bit 3 of [Pr. PT29] is on.
Mark sensor stop travel distance (lower three digits)	[Pr. PT30]	Set the lower three digits of the travel distance after the mark detection. The travel distance starts from the current position regardless of the setting of absolute value command method or incremental value command method.
Mark sensor stop travel distance (upper three digits)	[Pr. PT31]	Set the upper three digits of the travel distance after the mark detection. The travel distance starts from the current position regardless of the setting of absolute value command method or incremental value command method.
Mark detection range + (lower three digits)	[Pr. PC66]	Set the upper and lower limits of the interrupt positioning function. If a sign for the upper and lower differ, [AL. 37] occurs. When the roll feed display is enabled, set this value with the travel distance from the starting position.
Mark detection range + (upper three digits)	[Pr. PC67]	
Mark detection range - (lower three digits)	[Pr. PC68]	
Mark detection range - (upper three digits)	[Pr. PC69]	

12. APPLICATION OF FUNCTIONS

(2) Rotation direction

[Pr. PA14] setting	Servo motor rotation direction ST1 (Forward rotation start) on
---0	CCW rotation with + position data CW rotation with - position data
---1	CW rotation with + position data CCW rotation with - position data

(3) Operation

Travels for the interrupt positioning travel distance ([Pr. PT30] and [Pr. PT31]) starting from the position where MSD (Mark detection) is turned on. The operation after a stop complies with the operation mode and the operation pattern.
(4) Timing chart

Note. Deceleration time constant of the point table at the time of start is applied for the point table method, and deceleration time constant set by the program in execution is applied for the program method.

The movement other than above is as follows:
(a) When the interrupt positioning travel distance is smaller than the travel distance required for the deceleration, the actual deceleration time constant will be shorter than the set time constant.

12. APPLICATION OF FUNCTIONS

(b) When the interrupt travel distance is large during acceleration, the servo motor stops with the deceleration time constant after rotating with the command speed at which MSD (Mark detection) turned on.

Note. Deceleration time constant of the point table at the time of start is applied for the point table method, and deceleration time constant set by the program in execution is applied for the program method.
(c) When the interrupt travel distance is large during deceleration, the servo motor stops with the deceleration time constant after rotating with the command speed at which MSD (Mark detection) turned on.

Note. Deceleration time constant of the point table at the time of start is applied for the point table method, and deceleration time constant set by the program in execution is applied for the program method.
(d) When MSD (Mark detection) is turned on again during the interrupt positioning, the input will be disabled.

Note. Deceleration time constant of the point table at the time of start is applied for the point table method, and deceleration time constant set by the program in execution is applied for the program method.

12. APPLICATION OF FUNCTIONS

(5) Using together with other functions

Availability of other functions during the interrupt positioning is as follows:

Function	Availability (Note 1)
S-pattern acceleration/deceleration	\bigcirc
Stroke limit	\bigcirc
Software limit	\bigcirc
Temporary stop/restart	\times
Speed change value	$\times($ Note 2)
Analog override	\times
Backlash	\bigcirc
Rough match	\bigcirc
Electronic gear	\times
Roll feed display function	\times
Mark detection function (current position latch function)	

Note 1. O: enabled, \times : disabled, \triangle : enabled with condition
2. Enabled only in a constant speed

ITP (Interrupt positioning) is available in the program method.
Because the interrupt positioning function with MSD (Mark detection) input signal is prioritized, the interrupt positioning function with MSD (Mark detection) can be used during the interrupt positioning function with ITP (Interrupt positioning). However, ITP (Interrupt positioning) cannot be used during the interrupt positioning with MSD (Mark detection).

12.3 Infinite feed function (setting degree)

POINT

- This function can be used with the absolute position detection system.
-The infinite feed function (setting degree) is available with servo amplifiers with software version B7 or later.
-The infinite feed function (setting degree) can be used in the point table method and the program method.

When degree is set as the position data unit at the automatic operation or manual operation in the point table method or program method, [AL. E3.1 Multi-revolution counter travel distance excess warning] does not occur and the home position is not erased even if the servo motor rotates 32768 rev or more in the same direction. Thus, the current position is restored after the power is cycled. For other command units, [AL. E3.1 Multi-revolution counter travel distance excess warning] occurs and the home position is erased if the servo motor rotates 32768 rev or more in the same direction.

The following shows differences depending on the position data unit when the servo motor rotates 32768 rev or more in the same direction.

Parameter	Name	Setting digit	Setting value	Unit	[AL. E3.1]	Home position erasure	Current position restoration
PT01	Position data unit	${ }_{-}{ }^{-}$	0	[mm]	It occurs.	Supported	Not supported
			1	[inch]	It occurs.	Supported	Not supported
			2	[degree]	It does not occur. (Note)	None (Note)	Supported (Note)
			3	[pulse]	It occurs.	Supported	Not supported

[^9]*The manual number is given on the bottom left of the back cover.

Print Data	*Manual Number	Revision
Apr. 2014	SH(NA)030143-A	First edition
Aug. 2015	SH(NA)030143-B	MR-J4-03A6-RJ servo amplifier, MR-D01, compatibility to source pulses, interrupt positioning function, and infinite feed function (setting degree) are added. Safety Instructions Relevant manuals Chapter 1 Section 1.1 Section 1.2 Section 1.3 Section 1.4 Chapter 2 Section 2.1 Section 2.2 Section 2.3 Section 2.3 (1) Section 2.3 (2) Section 2.3 (3) (b) Section 2.3 (4) (b) Section 2.4 Section 2.5 Section 2.5.2 Section 2.5.3 Section 2.6 Chapter 3 Section 3.2 Chapter 4 Section 4.1 Section 4.2 Section 4.3 Section 4.4 Section 4.5 Section $4.6 \quad$ Partially changed. Chapter $5 \quad$ Sentences are added in the POINT. Section 5.1 Partially changed. Section $5.1 \quad$ Partially changed. Section $5.2 \quad$ Partially added and partially changed. Section 5.3 Partially changed. Section $5.4 \quad$ Sentences are partially deleted from the POINT. Partially changed. Section $5.5 \quad$ Partially added and partially changed. Section $5.6 \quad$ Partially added and partially changed. Section $5.8 \quad$ Partially changed. Chapter $6 \quad$ Partially changed. Section $6.1 \quad$ Partially added and partially changed. Section $6.2 \quad$ Partially added and partially changed. Section $6.3 \quad$ Partially added and partially changed. Section $6.4 \quad$ Sentences are partially changed in the POINT. Partially changed. Chapter 7 POINT is added.

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

Country/Region USA	Sales office MITSUBISHI ELECTRIC AUTOMATION, INC. 500 Corporate Woods Parkway, Vernon Hills, IL 60061, U.S.A.	$\begin{aligned} & \mathrm{Tel} / \mathrm{Fax} \\ & \mathrm{Tel}:+1-847-478-2100 \\ & \mathrm{Fax}:+1-847-478-2253 \end{aligned}$
Mexico	MITSUBISHI ELECTRIC AUTOMATION, INC. Mexico Branch Mariano Escobedo \#69, Col. Zona Industrial, Tlalnepantla Edo, C.P.54030, Mexico	```Tel :+52-55-3067-7500 Fax:-```
Brazil	MITSUBISHI ELECTRIC DO BRASIL COMÉRCIO E SERVIÇOS LTDA. Rua Jussara, 1750- Bloco B Anexo, Jardim Santa Cecilia, CÉP 06465-070, Barueri SP, Brasil	Tel : +55-11-4689-3000 Fax : +55-11-4689-3016
Germany	MITSUBISHI ELECTRIC EUROPE B.V. German Branch Gothaer Strasse 8, D-40880 Ratingen, Germany	Tel : +49-2102-486-0 Fax : +49-2102-486-1120
UK	MITSUBISHI ELECTRIC EUROPE B.V. UK Branch Travellers Lane, Hatfield, Hertfordshire, AL10 8XB, U.K.	$\begin{aligned} & \text { Tel : +44-1707-28-8780 } \\ & \text { Fax : +44-1707-27-8695 } \end{aligned}$
Italy	MITSUBISHI ELECTRIC EUROPE B.V. Italian Branch Centro Direzionale Colleoni - Palazzo Sirio Viale Colleoni 7, 20864 Agrate Brianza (Milano) Italy	$\begin{aligned} & \text { Tel : }+39-039-60531 \\ & \text { Fax : +39-039-6053-312 } \end{aligned}$
Spain	MITSUBISHI ELECTRIC EUROPE, B.V. Spanish Branch Carretera de Rubí, 76-80-Apdo. 420, 08173 Sant Cugat del Vallés (Barcelona), Spain	$\begin{aligned} & \text { Tel : +34-935-65-3131 } \\ & \text { Fax : +34-935-89-1579 } \end{aligned}$
France	MITSUBISHI ELECTRIC EUROPE B.V. French Branch 25, Boulevard des Bouvets, F-92741 Nanterre Cedex, France	$\begin{aligned} & \text { Tel: + } 33-1-55-68-55-68 \\ & \text { Fax: +33-1-55-68-57-57 } \end{aligned}$
Czech Republic	MITSUBISHI ELECTRIC EUROPE B.V. Czech Branch Avenir Business Park, Radlicka 751/113e, 15800 Praha5, Czech Republic	Tel : + 420-251-551-470 Fax : +420-251-551-471
Poland	MITSUBISHI ELECTRIC EUROPE B.V. Polish Branchul. Krakowska 50, 32-083 Balice, Poland	Tel: $+48-12-630-47-00$ Fax : +48-12-630-47-01
Russia	MITSUBISHI ELECTRIC EUROPE B.V. Russian Branch St. Petersburg office Piskarevsky pr. 2, bld 2, lit "Sch", BC "Benua", office 720; RU-195027 St. Petersburg, Russia	$\begin{aligned} & \text { Tel : +7-812-633-3497 } \\ & \text { Fax : +7-812-633-3499 } \end{aligned}$
Sweden	MITSUBISHI ELECTRIC EUROPE B.V. (Scandinavia) Fjelievägen 8, SE-22736 Lund, Sweden	Tel : +46-8-625-10-00 Fax : +46-46-39-70-18
Turkey	MITSUBISHI ELECTRIC TURKEY A.Ş Ümraniye Branch Şerifali Mahallesi Nutuk Sokak No:5, TR-34775 Ümraniye, İstanbul, Türkey	$\begin{aligned} & \text { Tel : +90-216-526-3990 } \\ & \text { Fax : +90-216-526-3995 } \end{aligned}$
UAE	MITSUBISHI ELECTRIC EUROPE B.V. Dubai Branch Dubai Silicon Oasis, P.O.BOX 341241, Dubai, U.A.E.	$\begin{aligned} & \text { Tel : +971-4-3724716 } \\ & \text { Fax : +971-4-3724721 } \end{aligned}$
South Africa	ADROIT TECHNOLOGIES 20 Waterford Office Park, 189 Witkoppen Road, Fourways, Johannesburg, South Africa	$\begin{aligned} & \text { Tel : +27-11-658-8100 } \\ & \text { Fax:+27-11-658-8101 } \end{aligned}$
China	MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. No. 1386 Hongqiao Road, Mitsubishi Electric Automation Center, Shanghai, China	$\begin{aligned} & \text { Tel : + 86-21-2322-3030 } \\ & \text { Fax : +86-21-2322-3000 } \end{aligned}$
Taiwan	SETSUYO ENTERPRISE CO., LTD. 6F, No. 105, Wugong 3rd Road, Wugu District, New Taipei City 24889, Taiwan, R.O.C.	$\begin{aligned} & \text { Tel : +886-2-2299-2499 } \\ & \text { Fax : +886-2-2299-2509 } \end{aligned}$
Korea	MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD. 7F-9F, Gangseo Hangang Xi-tower A, 401, Yangcheon-ro, Gangseo-Gu, Seoul 157-801, Korea	Tel : +82-2-3660-9510 Fax : +82-2-3664-8372/8335
Singapore	MITSUBISHI ELECTRIC ASIA PTE. LTD. 307, Alexandra Road, Mitsubishi Electric Building, Singapore 159943	$\begin{aligned} & \text { Tel : +65-6473-2308 } \\ & \text { Fax : +65-6476-7439 } \end{aligned}$
Thailand	MITSUBISHI ELECTRIC FACTORY AUTOMATION (THAILAND) CO., LTD. 12th Floor, SV.City Building, Office Tower 1, No. 896/19 and 20 Rama 3 Road, Kwaeng Bangpongpang, Khet Yannawa, Bangkok 10120, Thailand	$\begin{aligned} & \text { Tel : +66-2682-6522 to } 6531 \\ & \text { Fax : +66-2682-6020 } \end{aligned}$
Indonesia	PT. MITSUBISHI ELECTRIC INDONESIA Gedung Jaya 11th Floor, JL. MH. Thamrin No.12, Jakarta Pusat 10340, Indonesia	Tel : +62-21-3192-6461 Fax : +62-21-3192-3942
Vietnam	MITSUBISHI ELECTRIC VIETNAM COMPANY LIMITED Unit 01-04, 10th Floor, Vincom Center, 72 Le Thanh Ton Street, District 1, Ho Chi Minh City, Vietnam	$\begin{aligned} & \text { Tel : +84-8-3910-5945 } \\ & \text { Fax : +84-8-3910-5947 } \end{aligned}$
India	MITSUBISHI ELECTRIC INDIA PVT. LTD. Pune Branch Emerald House, EL -3, J Block, M.I.D.C Bhosari, Pune - 411026, Maharashtra, India	$\begin{aligned} & \text { Tel : +91-20-2710-2000 } \\ & \text { Fax : +91-20-2710-2100 } \end{aligned}$
Australia	MITSUBISHI ELECTRIC AUSTRALIA PTY. LTD. 348 Victoria Road, P.O. Box 11, Rydalmere, N.S.W 2116, Australia	$\begin{aligned} & \text { Tel : +61-2-9684-7777 } \\ & \text { Fax:+61-2-9684-7245 } \end{aligned}$

[^10]
Warranty

1. Warranty period and coverage

We will repair any failure or defect hereinafter referred to as "failure" in our FA equipment hereinafter referred to as the "Product" arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit are repaired or replaced.

[Term]

The term of warranty for Product is twelve (12) months after your purchase or delivery of the Product to a place designated by you or eighteen (18) months from the date of manufacture whichever comes first ("Warranty Period"). Warranty period for repaired Product cannot exceed beyond the original warranty period before any repair work.

[Limitations]

(1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule.

It can also be carried out by us or our service company upon your request and the actual cost will be charged. However, it will not be charged if we are responsible for the cause of the failure.
(2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product.
(3) Even during the term of warranty, the repair cost will be charged on you in the following cases;
(i) a failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
(ii) a failure caused by any alteration, etc. to the Product made on your side without our approval
(iii) a failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a common sense in the industry
(iv) a failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained and replaced
(v) any replacement of consumable parts (battery, fan, smoothing capacitor, etc.)
(vi) a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
(vii) a failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company
(viii) any other failures which we are not responsible for or which you acknowledge we are not responsible for
2. Term of warranty after the stop of production
(1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued. The announcement of the stop of production for each model can be seen in our Sales and Service, etc.
(2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.
3. Service in overseas countries

Our regional FA Center in overseas countries will accept the repair work of the Product. However, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA center for details.
4. Exclusion of responsibility for compensation against loss of opportunity, secondary loss, etc.

Whether under or after the term of warranty, we assume no responsibility for any damages arisen from causes for which we are not responsible, any losses of opportunity and/or profit incurred by you due to a failure of the Product, any damages, secondary damages or compensation for accidents arisen under a specific circumstance that are foreseen or unforeseen by our company, any damages to products other than the Product, and also compensation for any replacement work, readjustment, start-up test run of local machines and the Product and any other operations conducted by you.
5. Change of Product specifications

Specifications listed in our catalogs, manuals or technical documents may be changed without notice.
6. Application and use of the Product
(1) For the use of our General-Purpose AC Servo, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in General-Purpose AC Servo, and a backup or fail-safe function should operate on an external system to General-Purpose AC Servo when any failure or malfunction occurs.
(2) Our General-Purpose AC Servo is designed and manufactured as a general purpose product for use at general industries. Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used
In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used. We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application. Please contact us for consultation.

MODEL	MR-J4-A-RJ INSTRUCTIONMANUAL(ITGIME)
MODEL CODE	1CW819

[^0]: Note 1. If a parameter error and point table error occur simultaneously, the display shows the parameter error.
 2. The display shows only when the current alarm is [AL. 37 Parameter error].

[^1]: Note. Even if VC automatic offset is performed and 0 V is inputted, the speed may not completely be the set value.

[^2]: Note. The feed length multiplication setting ([Pr. PT03]) is not applied to the unit multiplication factor.

[^3]: Note 1. Only a list of alarms and warnings is listed in chapter 8. Refer to "MELSERVO-J4 Servo Amplifier Instruction Manual (Troubleshooting)" for details of alarms and warnings.
 2. MR-J4-03A6-RJ servo amplifiers are not compatible with the STO function.

[^4]: Note 1. Only a list of alarms and warnings is listed in chapter 8. Refer to "MELSERVO-J4 Servo Amplifier Instruction Manual (Troubleshooting)" for details of alarms and warnings.
 2. MR-J4-03A6-RJ servo amplifiers are not compatible with the STO function.

[^5]: Note. This is not available with the MR-J4-03A6-RJ servo amplifier.

[^6]: 3) After removing MR-D01, make sure to cap the CN7 and CN9 connectors to avoid dust and dirt.
[^7]: Note. 0: Off

[^8]: Note. Input the same positioning commands (point table data) to the driven shaft (axis 2) as those for the main shaft (axis 1).

[^9]: Note. For the servo amplifiers with software version B6 or earlier, [AL. E3.1] occurs and the home position is erased.

[^10]: MELSERVO is a trademark or registered trademark of Mitsubishi Electric Corporation in Japan and/or other countries.
 Modbus is registered trademark of SCHNEIDER ELECTRIC USA, INC.
 All other product names and company names are trademarks or registered trademarks of their respective companies.

